import torch from collections import namedtuple, OrderedDict from safetensors import safe_open from .attention_processor import init_attn_proc from .ip_adapter import MultiIPAdapterImageProjection from .resampler import Resampler from transformers import ( AutoModel, AutoImageProcessor, CLIPVisionModelWithProjection, CLIPImageProcessor) def init_adapter_in_unet( unet, image_proj_model=None, pretrained_model_path_or_dict=None, adapter_tokens=64, embedding_dim=None, use_lcm=False, use_adaln=True, ): device = unet.device dtype = unet.dtype if image_proj_model is None: assert embedding_dim is not None, "embedding_dim must be provided if image_proj_model is None." image_proj_model = Resampler( embedding_dim=embedding_dim, output_dim=unet.config.cross_attention_dim, num_queries=adapter_tokens, ) if pretrained_model_path_or_dict is not None: if not isinstance(pretrained_model_path_or_dict, dict): if pretrained_model_path_or_dict.endswith(".safetensors"): state_dict = {"image_proj": {}, "ip_adapter": {}} with safe_open(pretrained_model_path_or_dict, framework="pt", device=unet.device) as f: for key in f.keys(): if key.startswith("image_proj."): state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) elif key.startswith("ip_adapter."): state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) else: state_dict = torch.load(pretrained_model_path_or_dict, map_location=unet.device) else: state_dict = pretrained_model_path_or_dict keys = list(state_dict.keys()) if "image_proj" not in keys and "ip_adapter" not in keys: state_dict = revise_state_dict(state_dict) # Creat IP cross-attention in unet. attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln) unet.set_attn_processor(attn_procs) # Load pretrinaed model if needed. if pretrained_model_path_or_dict is not None: if "ip_adapter" in state_dict.keys(): adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False) for mk in missing: if "ln" not in mk: raise ValueError(f"Missing keys in adapter_modules: {missing}") if "image_proj" in state_dict.keys(): image_proj_model.load_state_dict(state_dict["image_proj"]) # Load image projectors into iterable ModuleList. image_projection_layers = [] image_projection_layers.append(image_proj_model) unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) # Adjust unet config to handle addtional ip hidden states. unet.config.encoder_hid_dim_type = "ip_image_proj" unet.to(dtype=dtype, device=device) def load_adapter_to_pipe( pipe, pretrained_model_path_or_dict, image_encoder_or_path=None, feature_extractor_or_path=None, use_clip_encoder=False, adapter_tokens=64, use_lcm=False, use_adaln=True, ): if not isinstance(pretrained_model_path_or_dict, dict): if pretrained_model_path_or_dict.endswith(".safetensors"): state_dict = {"image_proj": {}, "ip_adapter": {}} with safe_open(pretrained_model_path_or_dict, framework="pt", device=pipe.device) as f: for key in f.keys(): if key.startswith("image_proj."): state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key) elif key.startswith("ip_adapter."): state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key) else: state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device) else: state_dict = pretrained_model_path_or_dict keys = list(state_dict.keys()) if "image_proj" not in keys and "ip_adapter" not in keys: state_dict = revise_state_dict(state_dict) # load CLIP image encoder here if it has not been registered to the pipeline yet if image_encoder_or_path is not None: if isinstance(image_encoder_or_path, str): feature_extractor_or_path = image_encoder_or_path if feature_extractor_or_path is None else feature_extractor_or_path image_encoder_or_path = ( CLIPVisionModelWithProjection.from_pretrained( image_encoder_or_path ) if use_clip_encoder else AutoModel.from_pretrained(image_encoder_or_path) ) if feature_extractor_or_path is not None: if isinstance(feature_extractor_or_path, str): feature_extractor_or_path = ( CLIPImageProcessor() if use_clip_encoder else AutoImageProcessor.from_pretrained(feature_extractor_or_path) ) # create image encoder if it has not been registered to the pipeline yet if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None: image_encoder = image_encoder_or_path.to(pipe.device, dtype=pipe.dtype) pipe.register_modules(image_encoder=image_encoder) else: image_encoder = pipe.image_encoder # create feature extractor if it has not been registered to the pipeline yet if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None: feature_extractor = feature_extractor_or_path pipe.register_modules(feature_extractor=feature_extractor) else: feature_extractor = pipe.feature_extractor # load adapter into unet unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln) unet.set_attn_processor(attn_procs) image_proj_model = Resampler( embedding_dim=image_encoder.config.hidden_size, output_dim=unet.config.cross_attention_dim, num_queries=adapter_tokens, ) # Load pretrinaed model if needed. if "ip_adapter" in state_dict.keys(): adapter_modules = torch.nn.ModuleList(unet.attn_processors.values()) missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False) for mk in missing: if "ln" not in mk: raise ValueError(f"Missing keys in adapter_modules: {missing}") if "image_proj" in state_dict.keys(): image_proj_model.load_state_dict(state_dict["image_proj"]) # convert IP-Adapter Image Projection layers to diffusers image_projection_layers = [] image_projection_layers.append(image_proj_model) unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers) # Adjust unet config to handle addtional ip hidden states. unet.config.encoder_hid_dim_type = "ip_image_proj" unet.to(dtype=pipe.dtype, device=pipe.device) def revise_state_dict(old_state_dict_or_path, map_location="cpu"): new_state_dict = OrderedDict() new_state_dict["image_proj"] = OrderedDict() new_state_dict["ip_adapter"] = OrderedDict() if isinstance(old_state_dict_or_path, str): old_state_dict = torch.load(old_state_dict_or_path, map_location=map_location) else: old_state_dict = old_state_dict_or_path for name, weight in old_state_dict.items(): if name.startswith("image_proj_model."): new_state_dict["image_proj"][name[len("image_proj_model."):]] = weight elif name.startswith("adapter_modules."): new_state_dict["ip_adapter"][name[len("adapter_modules."):]] = weight return new_state_dict # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image def encode_image(image_encoder, feature_extractor, image, device, num_images_per_prompt, output_hidden_states=None): dtype = next(image_encoder.parameters()).dtype if not isinstance(image, torch.Tensor): image = feature_extractor(image, return_tensors="pt").pixel_values image = image.to(device=device, dtype=dtype) if output_hidden_states: image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2] image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) return image_enc_hidden_states else: if isinstance(image_encoder, CLIPVisionModelWithProjection): # CLIP image encoder. image_embeds = image_encoder(image).image_embeds else: # DINO image encoder. image_embeds = image_encoder(image).last_hidden_state image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) return image_embeds def prepare_training_image_embeds( image_encoder, feature_extractor, ip_adapter_image, ip_adapter_image_embeds, device, drop_rate, output_hidden_state, idx_to_replace=None ): if ip_adapter_image_embeds is None: if not isinstance(ip_adapter_image, list): ip_adapter_image = [ip_adapter_image] # if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers): # raise ValueError( # f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters." # ) image_embeds = [] for single_ip_adapter_image in ip_adapter_image: if idx_to_replace is None: idx_to_replace = torch.rand(len(single_ip_adapter_image)) < drop_rate zero_ip_adapter_image = torch.zeros_like(single_ip_adapter_image) single_ip_adapter_image[idx_to_replace] = zero_ip_adapter_image[idx_to_replace] single_image_embeds = encode_image( image_encoder, feature_extractor, single_ip_adapter_image, device, 1, output_hidden_state ) single_image_embeds = torch.stack([single_image_embeds], dim=1) # FIXME image_embeds.append(single_image_embeds) else: repeat_dims = [1] image_embeds = [] for single_image_embeds in ip_adapter_image_embeds: if do_classifier_free_guidance: single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) single_negative_image_embeds = single_negative_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:])) ) single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds]) else: single_image_embeds = single_image_embeds.repeat( num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:])) ) image_embeds.append(single_image_embeds) return image_embeds