Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
from typing import List | |
from collections import namedtuple, OrderedDict | |
def is_torch2_available(): | |
return hasattr(torch.nn.functional, "scaled_dot_product_attention") | |
if is_torch2_available(): | |
from .attention_processor import ( | |
AttnProcessor2_0 as AttnProcessor, | |
) | |
from .attention_processor import ( | |
CNAttnProcessor2_0 as CNAttnProcessor, | |
) | |
from .attention_processor import ( | |
IPAttnProcessor2_0 as IPAttnProcessor, | |
) | |
from .attention_processor import ( | |
TA_IPAttnProcessor2_0 as TA_IPAttnProcessor, | |
) | |
else: | |
from .attention_processor import AttnProcessor, CNAttnProcessor, IPAttnProcessor, TA_IPAttnProcessor | |
class ImageProjModel(torch.nn.Module): | |
"""Projection Model""" | |
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280, clip_extra_context_tokens=4): | |
super().__init__() | |
self.cross_attention_dim = cross_attention_dim | |
self.clip_extra_context_tokens = clip_extra_context_tokens | |
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) | |
self.norm = torch.nn.LayerNorm(cross_attention_dim) | |
def forward(self, image_embeds): | |
embeds = image_embeds | |
clip_extra_context_tokens = self.proj(embeds).reshape( | |
-1, self.clip_extra_context_tokens, self.cross_attention_dim | |
) | |
clip_extra_context_tokens = self.norm(clip_extra_context_tokens) | |
return clip_extra_context_tokens | |
class MLPProjModel(torch.nn.Module): | |
"""SD model with image prompt""" | |
def __init__(self, cross_attention_dim=2048, clip_embeddings_dim=1280): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
torch.nn.Linear(clip_embeddings_dim, clip_embeddings_dim), | |
torch.nn.GELU(), | |
torch.nn.Linear(clip_embeddings_dim, cross_attention_dim), | |
torch.nn.LayerNorm(cross_attention_dim) | |
) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class MultiIPAdapterImageProjection(torch.nn.Module): | |
def __init__(self, IPAdapterImageProjectionLayers): | |
super().__init__() | |
self.image_projection_layers = torch.nn.ModuleList(IPAdapterImageProjectionLayers) | |
def forward(self, image_embeds: List[torch.FloatTensor]): | |
projected_image_embeds = [] | |
# currently, we accept `image_embeds` as | |
# 1. a tensor (deprecated) with shape [batch_size, embed_dim] or [batch_size, sequence_length, embed_dim] | |
# 2. list of `n` tensors where `n` is number of ip-adapters, each tensor can hae shape [batch_size, num_images, embed_dim] or [batch_size, num_images, sequence_length, embed_dim] | |
if not isinstance(image_embeds, list): | |
image_embeds = [image_embeds.unsqueeze(1)] | |
if len(image_embeds) != len(self.image_projection_layers): | |
raise ValueError( | |
f"image_embeds must have the same length as image_projection_layers, got {len(image_embeds)} and {len(self.image_projection_layers)}" | |
) | |
for image_embed, image_projection_layer in zip(image_embeds, self.image_projection_layers): | |
batch_size, num_images = image_embed.shape[0], image_embed.shape[1] | |
image_embed = image_embed.reshape((batch_size * num_images,) + image_embed.shape[2:]) | |
image_embed = image_projection_layer(image_embed) | |
# image_embed = image_embed.reshape((batch_size, num_images) + image_embed.shape[1:]) | |
projected_image_embeds.append(image_embed) | |
return projected_image_embeds | |
class IPAdapter(torch.nn.Module): | |
"""IP-Adapter""" | |
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None): | |
super().__init__() | |
self.unet = unet | |
self.image_proj = image_proj_model | |
self.ip_adapter = adapter_modules | |
if ckpt_path is not None: | |
self.load_from_checkpoint(ckpt_path) | |
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds): | |
ip_tokens = self.image_proj(image_embeds) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) | |
# Predict the noise residual | |
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
return noise_pred | |
def load_from_checkpoint(self, ckpt_path: str): | |
# Calculate original checksums | |
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) | |
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) | |
state_dict = torch.load(ckpt_path, map_location="cpu") | |
keys = list(state_dict.keys()) | |
if keys != ["image_proj", "ip_adapter"]: | |
state_dict = revise_state_dict(state_dict) | |
# Load state dict for image_proj_model and adapter_modules | |
self.image_proj.load_state_dict(state_dict["image_proj"], strict=True) | |
self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=True) | |
# Calculate new checksums | |
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) | |
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) | |
# Verify if the weights have changed | |
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!" | |
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_modules did not change!" | |
class IPAdapterPlus(torch.nn.Module): | |
"""IP-Adapter""" | |
def __init__(self, unet, image_proj_model, adapter_modules, ckpt_path=None): | |
super().__init__() | |
self.unet = unet | |
self.image_proj = image_proj_model | |
self.ip_adapter = adapter_modules | |
if ckpt_path is not None: | |
self.load_from_checkpoint(ckpt_path) | |
def forward(self, noisy_latents, timesteps, encoder_hidden_states, image_embeds): | |
ip_tokens = self.image_proj(image_embeds) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) | |
# Predict the noise residual | |
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
return noise_pred | |
def load_from_checkpoint(self, ckpt_path: str): | |
# Calculate original checksums | |
orig_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) | |
orig_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) | |
org_unet_sum = [] | |
for attn_name, attn_proc in self.unet.attn_processors.items(): | |
if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)): | |
org_unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()]))) | |
org_unet_sum = torch.sum(torch.stack(org_unet_sum)) | |
state_dict = torch.load(ckpt_path, map_location="cpu") | |
keys = list(state_dict.keys()) | |
if keys != ["image_proj", "ip_adapter"]: | |
state_dict = revise_state_dict(state_dict) | |
# Check if 'latents' exists in both the saved state_dict and the current model's state_dict | |
strict_load_image_proj_model = True | |
if "latents" in state_dict["image_proj"] and "latents" in self.image_proj.state_dict(): | |
# Check if the shapes are mismatched | |
if state_dict["image_proj"]["latents"].shape != self.image_proj.state_dict()["latents"].shape: | |
print(f"Shapes of 'image_proj.latents' in checkpoint {ckpt_path} and current model do not match.") | |
print("Removing 'latents' from checkpoint and loading the rest of the weights.") | |
del state_dict["image_proj"]["latents"] | |
strict_load_image_proj_model = False | |
# Load state dict for image_proj_model and adapter_modules | |
self.image_proj.load_state_dict(state_dict["image_proj"], strict=strict_load_image_proj_model) | |
missing_key, unexpected_key = self.ip_adapter.load_state_dict(state_dict["ip_adapter"], strict=False) | |
if len(missing_key) > 0: | |
for ms in missing_key: | |
if "ln" not in ms: | |
raise ValueError(f"Missing key in adapter_modules: {len(missing_key)}") | |
if len(unexpected_key) > 0: | |
raise ValueError(f"Unexpected key in adapter_modules: {len(unexpected_key)}") | |
# Calculate new checksums | |
new_ip_proj_sum = torch.sum(torch.stack([torch.sum(p) for p in self.image_proj.parameters()])) | |
new_adapter_sum = torch.sum(torch.stack([torch.sum(p) for p in self.ip_adapter.parameters()])) | |
# Verify if the weights loaded to unet | |
unet_sum = [] | |
for attn_name, attn_proc in self.unet.attn_processors.items(): | |
if isinstance(attn_proc, (TA_IPAttnProcessor, IPAttnProcessor)): | |
unet_sum.append(torch.sum(torch.stack([torch.sum(p) for p in attn_proc.parameters()]))) | |
unet_sum = torch.sum(torch.stack(unet_sum)) | |
assert org_unet_sum != unet_sum, "Weights of adapter_modules in unet did not change!" | |
assert (unet_sum - new_adapter_sum < 1e-4), "Weights of adapter_modules did not load to unet!" | |
# Verify if the weights have changed | |
assert orig_ip_proj_sum != new_ip_proj_sum, "Weights of image_proj_model did not change!" | |
assert orig_adapter_sum != new_adapter_sum, "Weights of adapter_mod`ules did not change!" | |
class IPAdapterXL(IPAdapter): | |
"""SDXL""" | |
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds): | |
ip_tokens = self.image_proj(image_embeds) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) | |
# Predict the noise residual | |
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample | |
return noise_pred | |
class IPAdapterPlusXL(IPAdapterPlus): | |
"""IP-Adapter with fine-grained features""" | |
def forward(self, noisy_latents, timesteps, encoder_hidden_states, unet_added_cond_kwargs, image_embeds): | |
ip_tokens = self.image_proj(image_embeds) | |
encoder_hidden_states = torch.cat([encoder_hidden_states, ip_tokens], dim=1) | |
# Predict the noise residual | |
noise_pred = self.unet(noisy_latents, timesteps, encoder_hidden_states, added_cond_kwargs=unet_added_cond_kwargs).sample | |
return noise_pred | |
class IPAdapterFull(IPAdapterPlus): | |
"""IP-Adapter with full features""" | |
def init_proj(self): | |
image_proj_model = MLPProjModel( | |
cross_attention_dim=self.pipe.unet.config.cross_attention_dim, | |
clip_embeddings_dim=self.image_encoder.config.hidden_size, | |
).to(self.device, dtype=torch.float16) | |
return image_proj_model | |