InstantIR / infer.py
fffiloni's picture
Upload folder using huggingface_hub
0305a63 verified
raw
history blame
13.7 kB
import os
import argparse
import numpy as np
import torch
from PIL import Image
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
from diffusers import DDPMScheduler
from module.ip_adapter.utils import load_adapter_to_pipe
from pipelines.sdxl_instantir import InstantIRPipeline
def name_unet_submodules(unet):
def recursive_find_module(name, module, end=False):
if end:
for sub_name, sub_module in module.named_children():
sub_module.full_name = f"{name}.{sub_name}"
return
if not "up_blocks" in name and not "down_blocks" in name and not "mid_block" in name: return
elif "resnets" in name: return
for sub_name, sub_module in module.named_children():
end = True if sub_name == "transformer_blocks" else False
recursive_find_module(f"{name}.{sub_name}", sub_module, end)
for name, module in unet.named_children():
recursive_find_module(name, module)
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
# ratio = min_side / min(h, w)
# w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def tensor_to_pil(images):
"""
Convert image tensor or a batch of image tensors to PIL image(s).
"""
images = images.clamp(0, 1)
images_np = images.detach().cpu().numpy()
if images_np.ndim == 4:
images_np = np.transpose(images_np, (0, 2, 3, 1))
elif images_np.ndim == 3:
images_np = np.transpose(images_np, (1, 2, 0))
images_np = images_np[None, ...]
images_np = (images_np * 255).round().astype("uint8")
if images_np.shape[-1] == 1:
# special case for grayscale (single channel) images
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images_np]
else:
pil_images = [Image.fromarray(image[:, :, :3]) for image in images_np]
return pil_images
def calc_mean_std(feat, eps=1e-5):
"""Calculate mean and std for adaptive_instance_normalization.
Args:
feat (Tensor): 4D tensor.
eps (float): A small value added to the variance to avoid
divide-by-zero. Default: 1e-5.
"""
size = feat.size()
assert len(size) == 4, 'The input feature should be 4D tensor.'
b, c = size[:2]
feat_var = feat.view(b, c, -1).var(dim=2) + eps
feat_std = feat_var.sqrt().view(b, c, 1, 1)
feat_mean = feat.view(b, c, -1).mean(dim=2).view(b, c, 1, 1)
return feat_mean, feat_std
def adaptive_instance_normalization(content_feat, style_feat):
size = content_feat.size()
style_mean, style_std = calc_mean_std(style_feat)
content_mean, content_std = calc_mean_std(content_feat)
normalized_feat = (content_feat - content_mean.expand(size)) / content_std.expand(size)
return normalized_feat * style_std.expand(size) + style_mean.expand(size)
def main(args, device):
# Load pretrained models.
pipe = InstantIRPipeline.from_pretrained(
args.sdxl_path,
torch_dtype=torch.float16,
)
# Image prompt projector.
print("Loading LQ-Adapter...")
load_adapter_to_pipe(
pipe,
args.adapter_model_path if args.adapter_model_path is not None else os.path.join(args.instantir_path, 'adapter.pt'),
args.vision_encoder_path,
use_clip_encoder=args.use_clip_encoder,
)
# Prepare previewer
previewer_lora_path = args.previewer_lora_path if args.previewer_lora_path is not None else args.instantir_path
if previewer_lora_path is not None:
lora_alpha = pipe.prepare_previewers(previewer_lora_path)
print(f"use lora alpha {lora_alpha}")
pipe.to(device=device, dtype=torch.float16)
pipe.scheduler = DDPMScheduler.from_pretrained(args.sdxl_path, subfolder="scheduler")
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
# Load weights.
print("Loading checkpoint...")
pretrained_state_dict = torch.load(os.path.join(args.instantir_path, "aggregator.pt"), map_location="cpu")
pipe.aggregator.load_state_dict(pretrained_state_dict)
pipe.aggregator.to(device, dtype=torch.float16)
#################### Restoration ####################
post_fix = f"_{args.post_fix}" if args.post_fix else ""
os.makedirs(f"{args.out_path}/{post_fix}", exist_ok=True)
processed_imgs = os.listdir(os.path.join(args.out_path, post_fix))
lq_files = []
lq_batch = []
if os.path.isfile(args.test_path):
all_inputs = [args.test_path.split("/")[-1]]
else:
all_inputs = os.listdir(args.test_path)
all_inputs.sort()
for file in all_inputs:
if file in processed_imgs:
print(f"Skip {file}")
continue
lq_batch.append(f"{file}")
if len(lq_batch) == args.batch_size:
lq_files.append(lq_batch)
lq_batch = []
if len(lq_batch) > 0:
lq_files.append(lq_batch)
for lq_batch in lq_files:
generator = torch.Generator(device=device).manual_seed(args.seed)
pil_lqs = [Image.open(os.path.join(args.test_path, file)) for file in lq_batch]
if args.width is None or args.height is None:
lq = [resize_img(pil_lq.convert("RGB"), size=None) for pil_lq in pil_lqs]
else:
lq = [resize_img(pil_lq.convert("RGB"), size=(args.width, args.height)) for pil_lq in pil_lqs]
timesteps = None
if args.denoising_start < 1000:
timesteps = [
i * (args.denoising_start//args.num_inference_steps) + pipe.scheduler.config.steps_offset for i in range(0, args.num_inference_steps)
]
timesteps = timesteps[::-1]
pipe.scheduler.set_timesteps(args.num_inference_steps, device)
timesteps = pipe.scheduler.timesteps
if args.prompt is None or len(args.prompt) == 0:
prompt = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
ultra HD, extreme meticulous detailing, skin pore detailing, \
hyper sharpness, perfect without deformations, \
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "
else:
prompt = args.prompt
if not isinstance(prompt, list):
prompt = [prompt]
prompt = prompt*len(lq)
if args.neg_prompt is None or len(args.neg_prompt) == 0:
neg_prompt = "blurry, out of focus, unclear, depth of field, over-smooth, \
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
watermark, signature, jpeg artifacts, deformed, lowres"
else:
neg_prompt = args.neg_prompt
if not isinstance(neg_prompt, list):
neg_prompt = [neg_prompt]
neg_prompt = neg_prompt*len(lq)
image = pipe(
prompt=prompt,
image=lq,
num_inference_steps=args.num_inference_steps,
generator=generator,
timesteps=timesteps,
negative_prompt=neg_prompt,
guidance_scale=args.cfg,
previewer_scheduler=lcm_scheduler,
preview_start=args.preview_start,
control_guidance_end=args.creative_start,
).images
if args.save_preview_row:
for i, lcm_image in enumerate(image[1]):
lcm_image.save(f"./lcm/{i}.png")
for i, rec_image in enumerate(image):
rec_image.save(f"{args.out_path}/{post_fix}/{lq_batch[i]}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="InstantIR pipeline")
parser.add_argument(
"--sdxl_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--previewer_lora_path",
type=str,
default=None,
help="Path to LCM lora or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--instantir_path",
type=str,
default=None,
required=True,
help="Path to pretrained instantir model.",
)
parser.add_argument(
"--vision_encoder_path",
type=str,
default='/share/huangrenyuan/model_zoo/vis_backbone/dinov2_large',
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--adapter_model_path",
type=str,
default=None,
help="Path to IP-Adapter models or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--adapter_tokens",
type=int,
default=64,
help="Number of tokens to use in IP-adapter cross attention mechanism.",
)
parser.add_argument(
"--use_clip_encoder",
action="store_true",
help="Whether or not to use DINO as image encoder, else CLIP encoder.",
)
parser.add_argument(
"--denoising_start",
type=int,
default=1000,
help="Diffusion start timestep."
)
parser.add_argument(
"--num_inference_steps",
type=int,
default=30,
help="Diffusion steps."
)
parser.add_argument(
"--creative_start",
type=float,
default=1.0,
help="Proportion of timesteps for creative restoration. 1.0 means no creative restoration while 0.0 means completely free rendering."
)
parser.add_argument(
"--preview_start",
type=float,
default=0.0,
help="Proportion of timesteps to stop previewing at the begining to enhance fidelity to input."
)
parser.add_argument(
"--resolution",
type=int,
default=1024,
help="Number of tokens to use in IP-adapter cross attention mechanism.",
)
parser.add_argument(
"--batch_size",
type=int,
default=6,
help="Test batch size."
)
parser.add_argument(
"--width",
type=int,
default=None,
help="Output image width."
)
parser.add_argument(
"--height",
type=int,
default=None,
help="Output image height."
)
parser.add_argument(
"--cfg",
type=float,
default=7.0,
help="Scale of Classifier-Free-Guidance (CFG).",
)
parser.add_argument(
"--post_fix",
type=str,
default=None,
help="Subfolder name for restoration output under the output directory.",
)
parser.add_argument(
"--variant",
type=str,
default='fp16',
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--save_preview_row",
action="store_true",
help="Whether or not to save the intermediate lcm outputs.",
)
parser.add_argument(
"--prompt",
type=str,
default='',
nargs="+",
help=(
"A set of prompts for creative restoration. Provide either a matching number of test images,"
" or a single prompt to be used with all inputs."
),
)
parser.add_argument(
"--neg_prompt",
type=str,
default='',
nargs="+",
help=(
"A set of negative prompts for creative restoration. Provide either a matching number of test images,"
" or a single negative prompt to be used with all inputs."
),
)
parser.add_argument(
"--test_path",
type=str,
default=None,
required=True,
help="Test directory.",
)
parser.add_argument(
"--out_path",
type=str,
default="./output",
help="Output directory.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
args = parser.parse_args()
args.height = args.height or args.width
args.width = args.width or args.height
if args.height is not None and (args.width % 64 != 0 or args.height % 64 != 0):
raise ValueError("Image resolution must be divisible by 64.")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
main(args, device)