File size: 11,972 Bytes
0305a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import torch
from collections import namedtuple, OrderedDict
from safetensors import safe_open
from .attention_processor import init_attn_proc
from .ip_adapter import MultiIPAdapterImageProjection
from .resampler import Resampler
from transformers import (
    AutoModel, AutoImageProcessor,
    CLIPVisionModelWithProjection, CLIPImageProcessor)


def init_adapter_in_unet(
        unet,
        image_proj_model=None,
        pretrained_model_path_or_dict=None,
        adapter_tokens=64,
        embedding_dim=None,
        use_lcm=False,
        use_adaln=True,
    ):
        device = unet.device
        dtype = unet.dtype
        if image_proj_model is None:
            assert embedding_dim is not None, "embedding_dim must be provided if image_proj_model is None."
            image_proj_model = Resampler(
                embedding_dim=embedding_dim,
                output_dim=unet.config.cross_attention_dim,
                num_queries=adapter_tokens,
            )
        if pretrained_model_path_or_dict is not None:
            if not isinstance(pretrained_model_path_or_dict, dict):
                if pretrained_model_path_or_dict.endswith(".safetensors"):
                    state_dict = {"image_proj": {}, "ip_adapter": {}}
                    with safe_open(pretrained_model_path_or_dict, framework="pt", device=unet.device) as f:
                        for key in f.keys():
                            if key.startswith("image_proj."):
                                state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                            elif key.startswith("ip_adapter."):
                                state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
                else:
                    state_dict = torch.load(pretrained_model_path_or_dict, map_location=unet.device)
            else:
                state_dict = pretrained_model_path_or_dict
            keys = list(state_dict.keys())
            if "image_proj" not in keys and "ip_adapter" not in keys:
                state_dict = revise_state_dict(state_dict)

        # Creat IP cross-attention in unet.
        attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln)
        unet.set_attn_processor(attn_procs)

        # Load pretrinaed model if needed.
        if pretrained_model_path_or_dict is not None:
            if "ip_adapter" in state_dict.keys():
                adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
                missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False)
                for mk in missing:
                    if "ln" not in mk:
                        raise ValueError(f"Missing keys in adapter_modules: {missing}")
            if "image_proj" in state_dict.keys():
                image_proj_model.load_state_dict(state_dict["image_proj"])

        # Load image projectors into iterable ModuleList.
        image_projection_layers = []
        image_projection_layers.append(image_proj_model)
        unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)

        # Adjust unet config to handle addtional ip hidden states.
        unet.config.encoder_hid_dim_type = "ip_image_proj"
        unet.to(dtype=dtype, device=device)


def load_adapter_to_pipe(
        pipe,
        pretrained_model_path_or_dict,
        image_encoder_or_path=None,
        feature_extractor_or_path=None,
        use_clip_encoder=False,
        adapter_tokens=64,
        use_lcm=False,
        use_adaln=True,
    ):

        if not isinstance(pretrained_model_path_or_dict, dict):
            if pretrained_model_path_or_dict.endswith(".safetensors"):
                state_dict = {"image_proj": {}, "ip_adapter": {}}
                with safe_open(pretrained_model_path_or_dict, framework="pt", device=pipe.device) as f:
                    for key in f.keys():
                        if key.startswith("image_proj."):
                            state_dict["image_proj"][key.replace("image_proj.", "")] = f.get_tensor(key)
                        elif key.startswith("ip_adapter."):
                            state_dict["ip_adapter"][key.replace("ip_adapter.", "")] = f.get_tensor(key)
            else:
                state_dict = torch.load(pretrained_model_path_or_dict, map_location=pipe.device)
        else:
            state_dict = pretrained_model_path_or_dict
        keys = list(state_dict.keys())
        if "image_proj" not in keys and "ip_adapter" not in keys:
            state_dict = revise_state_dict(state_dict)

        # load CLIP image encoder here if it has not been registered to the pipeline yet
        if image_encoder_or_path is not None:
            if isinstance(image_encoder_or_path, str):
                feature_extractor_or_path = image_encoder_or_path if feature_extractor_or_path is None else feature_extractor_or_path

                image_encoder_or_path = (
                    CLIPVisionModelWithProjection.from_pretrained(
                        image_encoder_or_path
                    ) if use_clip_encoder else
                    AutoModel.from_pretrained(image_encoder_or_path)
                )

        if feature_extractor_or_path is not None:
            if isinstance(feature_extractor_or_path, str):
                feature_extractor_or_path = (
                    CLIPImageProcessor() if use_clip_encoder else
                    AutoImageProcessor.from_pretrained(feature_extractor_or_path)
                )

        # create image encoder if it has not been registered to the pipeline yet
        if hasattr(pipe, "image_encoder") and getattr(pipe, "image_encoder", None) is None:
            image_encoder = image_encoder_or_path.to(pipe.device, dtype=pipe.dtype)
            pipe.register_modules(image_encoder=image_encoder)
        else:
            image_encoder = pipe.image_encoder

        # create feature extractor if it has not been registered to the pipeline yet
        if hasattr(pipe, "feature_extractor") and getattr(pipe, "feature_extractor", None) is None:
            feature_extractor = feature_extractor_or_path
            pipe.register_modules(feature_extractor=feature_extractor)
        else:
            feature_extractor = pipe.feature_extractor

        # load adapter into unet
        unet = getattr(pipe, pipe.unet_name) if not hasattr(pipe, "unet") else pipe.unet
        attn_procs = init_attn_proc(unet, adapter_tokens, use_lcm, use_adaln)
        unet.set_attn_processor(attn_procs)
        image_proj_model = Resampler(
            embedding_dim=image_encoder.config.hidden_size,
            output_dim=unet.config.cross_attention_dim,
            num_queries=adapter_tokens,
        )

        # Load pretrinaed model if needed.
        if "ip_adapter" in state_dict.keys():
            adapter_modules = torch.nn.ModuleList(unet.attn_processors.values())
            missing, unexpected = adapter_modules.load_state_dict(state_dict["ip_adapter"], strict=False)
            for mk in missing:
                if "ln" not in mk:
                    raise ValueError(f"Missing keys in adapter_modules: {missing}")
        if "image_proj" in state_dict.keys():
            image_proj_model.load_state_dict(state_dict["image_proj"])

        # convert IP-Adapter Image Projection layers to diffusers
        image_projection_layers = []
        image_projection_layers.append(image_proj_model)
        unet.encoder_hid_proj = MultiIPAdapterImageProjection(image_projection_layers)

        # Adjust unet config to handle addtional ip hidden states.
        unet.config.encoder_hid_dim_type = "ip_image_proj"
        unet.to(dtype=pipe.dtype, device=pipe.device)


def revise_state_dict(old_state_dict_or_path, map_location="cpu"):
    new_state_dict = OrderedDict()
    new_state_dict["image_proj"] = OrderedDict()
    new_state_dict["ip_adapter"] = OrderedDict()
    if isinstance(old_state_dict_or_path, str):
        old_state_dict = torch.load(old_state_dict_or_path, map_location=map_location)
    else:
        old_state_dict = old_state_dict_or_path
    for name, weight in old_state_dict.items():
        if name.startswith("image_proj_model."):
            new_state_dict["image_proj"][name[len("image_proj_model."):]] = weight
        elif name.startswith("adapter_modules."):
            new_state_dict["ip_adapter"][name[len("adapter_modules."):]] = weight
    return new_state_dict


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
def encode_image(image_encoder, feature_extractor, image, device, num_images_per_prompt, output_hidden_states=None):
    dtype = next(image_encoder.parameters()).dtype

    if not isinstance(image, torch.Tensor):
        image = feature_extractor(image, return_tensors="pt").pixel_values

    image = image.to(device=device, dtype=dtype)
    if output_hidden_states:
        image_enc_hidden_states = image_encoder(image, output_hidden_states=True).hidden_states[-2]
        image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
        return image_enc_hidden_states
    else:
        if isinstance(image_encoder, CLIPVisionModelWithProjection):
            # CLIP image encoder.
            image_embeds = image_encoder(image).image_embeds
        else:
            # DINO image encoder.
            image_embeds = image_encoder(image).last_hidden_state
        image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
        return image_embeds


def prepare_training_image_embeds(
    image_encoder, feature_extractor,
    ip_adapter_image, ip_adapter_image_embeds,
    device, drop_rate, output_hidden_state, idx_to_replace=None
):
    if ip_adapter_image_embeds is None:
        if not isinstance(ip_adapter_image, list):
            ip_adapter_image = [ip_adapter_image]

        # if len(ip_adapter_image) != len(unet.encoder_hid_proj.image_projection_layers):
        #     raise ValueError(
        #         f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
        #     )

        image_embeds = []
        for single_ip_adapter_image in ip_adapter_image:
            if idx_to_replace is None:
                idx_to_replace = torch.rand(len(single_ip_adapter_image)) < drop_rate
            zero_ip_adapter_image = torch.zeros_like(single_ip_adapter_image)
            single_ip_adapter_image[idx_to_replace] = zero_ip_adapter_image[idx_to_replace]
            single_image_embeds = encode_image(
                image_encoder, feature_extractor, single_ip_adapter_image, device, 1, output_hidden_state
            )
            single_image_embeds = torch.stack([single_image_embeds], dim=1) # FIXME

            image_embeds.append(single_image_embeds)
    else:
        repeat_dims = [1]
        image_embeds = []
        for single_image_embeds in ip_adapter_image_embeds:
            if do_classifier_free_guidance:
                single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
                single_image_embeds = single_image_embeds.repeat(
                    num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                )
                single_negative_image_embeds = single_negative_image_embeds.repeat(
                    num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
                )
                single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
            else:
                single_image_embeds = single_image_embeds.repeat(
                    num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
                )
            image_embeds.append(single_image_embeds)

    return image_embeds