Spaces:
Running
on
Zero
Running
on
Zero
File size: 52,702 Bytes
0305a63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import contextlib
import time
import gc
import logging
import math
import os
import random
import jsonlines
import functools
import shutil
import pyrallis
import itertools
from pathlib import Path
from collections import namedtuple, OrderedDict
import accelerate
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from datasets import load_dataset
from packaging import version
from PIL import Image
from data.data_config import DataConfig
from basicsr.utils.degradation_pipeline import RealESRGANDegradation
from losses.loss_config import LossesConfig
from losses.losses import *
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import (
AutoTokenizer,
PretrainedConfig,
CLIPImageProcessor, CLIPVisionModelWithProjection,
AutoImageProcessor, AutoModel)
import diffusers
from diffusers import (
AutoencoderKL,
AutoencoderTiny,
DDPMScheduler,
StableDiffusionXLPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import check_min_version, is_wandb_available, make_image_grid
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
from utils.train_utils import (
seperate_ip_params_from_unet,
import_model_class_from_model_name_or_path,
tensor_to_pil,
get_train_dataset, prepare_train_dataset, collate_fn,
encode_prompt, importance_sampling_fn, extract_into_tensor
)
from module.ip_adapter.resampler import Resampler
from module.ip_adapter.attention_processor import init_attn_proc
from module.ip_adapter.utils import init_adapter_in_unet, prepare_training_image_embeds
if is_wandb_available():
import wandb
logger = get_logger(__name__)
def log_validation(unet, vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
scheduler, image_encoder, image_processor, deg_pipeline,
args, accelerator, weight_dtype, step, lq_img=None, gt_img=None, is_final_validation=False, log_local=False):
logger.info("Running validation... ")
image_logs = []
lq = [Image.open(lq_example) for lq_example in args.validation_image]
pipe = StableDiffusionXLPipeline(
vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
unet, scheduler, image_encoder, image_processor,
).to(accelerator.device)
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
image = pipe(
prompt=[""]*len(lq),
ip_adapter_image=[lq],
num_inference_steps=20,
generator=generator,
guidance_scale=5.0,
height=args.resolution,
width=args.resolution,
).images
if log_local:
for i, img in enumerate(tensor_to_pil(lq_img)):
img.save(f"./lq_{i}.png")
for i, img in enumerate(tensor_to_pil(gt_img)):
img.save(f"./gt_{i}.png")
for i, img in enumerate(image):
img.save(f"./lq_IPA_{i}.png")
return
tracker_key = "test" if is_final_validation else "validation"
for tracker in accelerator.trackers:
if tracker.name == "tensorboard":
images = [np.asarray(pil_img) for pil_img in image]
images = np.stack(images, axis=0)
if lq_img is not None and gt_img is not None:
input_lq = lq_img.detach().cpu()
input_lq = np.asarray(input_lq.add(1).div(2).clamp(0, 1))
input_gt = gt_img.detach().cpu()
input_gt = np.asarray(input_gt.add(1).div(2).clamp(0, 1))
tracker.writer.add_images("lq", input_lq[0], step, dataformats="CHW")
tracker.writer.add_images("gt", input_gt[0], step, dataformats="CHW")
tracker.writer.add_images("rec", images, step, dataformats="NHWC")
elif tracker.name == "wandb":
raise NotImplementedError("Wandb logging not implemented for validation.")
formatted_images = []
for log in image_logs:
images = log["images"]
validation_prompt = log["validation_prompt"]
validation_image = log["validation_image"]
formatted_images.append(wandb.Image(validation_image, caption="Controlnet conditioning"))
for image in images:
image = wandb.Image(image, caption=validation_prompt)
formatted_images.append(image)
tracker.log({tracker_key: formatted_images})
else:
logger.warning(f"image logging not implemented for {tracker.name}")
gc.collect()
torch.cuda.empty_cache()
return image_logs
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="InstantIR stage-1 training.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_vae_model_name_or_path",
type=str,
default=None,
help="Path to an improved VAE to stabilize training. For more details check out: https://github.com/huggingface/diffusers/pull/4038.",
)
parser.add_argument(
"--feature_extractor_path",
type=str,
default=None,
help="Path to image encoder for IP-Adapters or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--pretrained_adapter_model_path",
type=str,
default=None,
help="Path to IP-Adapter models or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--adapter_tokens",
type=int,
default=64,
help="Number of tokens to use in IP-adapter cross attention mechanism.",
)
parser.add_argument(
"--use_clip_encoder",
action="store_true",
help="Whether or not to use DINO as image encoder, else CLIP encoder.",
)
parser.add_argument(
"--image_encoder_hidden_feature",
action="store_true",
help="Whether or not to use the penultimate hidden states as image embeddings.",
)
parser.add_argument(
"--losses_config_path",
type=str,
required=True,
default='config_files/losses.yaml'
help=("A yaml file containing losses to use and their weights."),
)
parser.add_argument(
"--data_config_path",
type=str,
default='config_files/IR_dataset.yaml',
help=("A folder containing the training data. "),
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--output_dir",
type=str,
default="stage1_model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--crops_coords_top_left_h",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--crops_coords_top_left_w",
type=int,
default=0,
help=("Coordinate for (the height) to be included in the crop coordinate embeddings needed by SDXL UNet."),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=2000,
help=(
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co./docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=5,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--save_only_adapter",
action="store_true",
help="Only save extra adapter to save space.",
)
parser.add_argument(
"--importance_sampling",
action="store_true",
help="Whether or not to use importance sampling.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_dir",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co./docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--image_column", type=str, default="image", help="The column of the dataset containing the target image."
)
parser.add_argument(
"--conditioning_image_column",
type=str,
default="conditioning_image",
help="The column of the dataset containing the controlnet conditioning image.",
)
parser.add_argument(
"--caption_column",
type=str,
default="text",
help="The column of the dataset containing a caption or a list of captions.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--text_drop_rate",
type=float,
default=0.05,
help="Proportion of image prompts to be replaced with empty strings. Defaults to 0 (no prompt replacement).",
)
parser.add_argument(
"--image_drop_rate",
type=float,
default=0.05,
help="Proportion of IP-Adapter inputs to be dropped. Defaults to 0 (no drop-out).",
)
parser.add_argument(
"--cond_drop_rate",
type=float,
default=0.05,
help="Proportion of all conditions to be dropped. Defaults to 0 (no drop-out).",
)
parser.add_argument(
"--sanity_check",
action="store_true",
help=(
"sanity check"
),
)
parser.add_argument(
"--validation_prompt",
type=str,
default=None,
nargs="+",
help=(
"A set of prompts evaluated every `--validation_steps` and logged to `--report_to`."
" Provide either a matching number of `--validation_image`s, a single `--validation_image`"
" to be used with all prompts, or a single prompt that will be used with all `--validation_image`s."
),
)
parser.add_argument(
"--validation_image",
type=str,
default=None,
nargs="+",
help=(
"A set of paths to the controlnet conditioning image be evaluated every `--validation_steps`"
" and logged to `--report_to`. Provide either a matching number of `--validation_prompt`s, a"
" a single `--validation_prompt` to be used with all `--validation_image`s, or a single"
" `--validation_image` that will be used with all `--validation_prompt`s."
),
)
parser.add_argument(
"--num_validation_images",
type=int,
default=4,
help="Number of images to be generated for each `--validation_image`, `--validation_prompt` pair",
)
parser.add_argument(
"--validation_steps",
type=int,
default=3000,
help=(
"Run validation every X steps. Validation consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`"
" and logging the images."
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="instantir_stage1",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co./docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
if input_args is not None:
args = parser.parse_args(input_args)
else:
args = parser.parse_args()
# if args.dataset_name is None and args.train_data_dir is None and args.data_config_path is None:
# raise ValueError("Specify either `--dataset_name` or `--train_data_dir`")
if args.dataset_name is not None and args.train_data_dir is not None:
raise ValueError("Specify only one of `--dataset_name` or `--train_data_dir`")
if args.text_drop_rate < 0 or args.text_drop_rate > 1:
raise ValueError("`--text_drop_rate` must be in the range [0, 1].")
if args.validation_prompt is not None and args.validation_image is None:
raise ValueError("`--validation_image` must be set if `--validation_prompt` is set")
if args.validation_prompt is None and args.validation_image is not None:
raise ValueError("`--validation_prompt` must be set if `--validation_image` is set")
if (
args.validation_image is not None
and args.validation_prompt is not None
and len(args.validation_image) != 1
and len(args.validation_prompt) != 1
and len(args.validation_image) != len(args.validation_prompt)
):
raise ValueError(
"Must provide either 1 `--validation_image`, 1 `--validation_prompt`,"
" or the same number of `--validation_prompt`s and `--validation_image`s"
)
if args.resolution % 8 != 0:
raise ValueError(
"`--resolution` must be divisible by 8 for consistently sized encoded images between the VAE and the controlnet encoder."
)
return args
def main(args):
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging_dir = Path(args.output_dir, args.logging_dir)
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
# kwargs_handlers=[kwargs],
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation.
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# Load scheduler and models
noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
# Importance sampling.
list_of_candidates = np.arange(noise_scheduler.config.num_train_timesteps, dtype='float64')
prob_dist = importance_sampling_fn(list_of_candidates, noise_scheduler.config.num_train_timesteps, 0.5)
importance_ratio = prob_dist / prob_dist.sum() * noise_scheduler.config.num_train_timesteps
importance_ratio = torch.from_numpy(importance_ratio.copy()).float()
# Load the tokenizers
tokenizer = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
use_fast=False,
)
tokenizer_2 = AutoTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
use_fast=False,
)
# Text encoder and image encoder.
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder = text_encoder_cls_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
text_encoder_2 = text_encoder_cls_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
if args.use_clip_encoder:
image_processor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(args.feature_extractor_path)
else:
image_processor = AutoImageProcessor.from_pretrained(args.feature_extractor_path)
image_encoder = AutoModel.from_pretrained(args.feature_extractor_path)
# VAE.
vae_path = (
args.pretrained_model_name_or_path
if args.pretrained_vae_model_name_or_path is None
else args.pretrained_vae_model_name_or_path
)
vae = AutoencoderKL.from_pretrained(
vae_path,
subfolder="vae" if args.pretrained_vae_model_name_or_path is None else None,
revision=args.revision,
variant=args.variant,
)
# UNet.
unet = UNet2DConditionModel.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="unet",
revision=args.revision,
variant=args.variant
)
pipe = StableDiffusionXLPipeline.from_pretrained(
args.pretrained_model_name_or_path,
unet=unet,
text_encoder=text_encoder,
text_encoder_2=text_encoder_2,
vae=vae,
tokenizer=tokenizer,
tokenizer_2=tokenizer_2,
variant=args.variant
)
# Resampler for project model in IP-Adapter
image_proj_model = Resampler(
dim=1280,
depth=4,
dim_head=64,
heads=20,
num_queries=args.adapter_tokens,
embedding_dim=image_encoder.config.hidden_size,
output_dim=unet.config.cross_attention_dim,
ff_mult=4
)
init_adapter_in_unet(
unet,
image_proj_model,
os.path.join(args.pretrained_adapter_model_path, 'adapter_ckpt.pt'),
adapter_tokens=args.adapter_tokens,
)
# Initialize training state.
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
text_encoder_2.requires_grad_(False)
unet.requires_grad_(False)
image_encoder.requires_grad_(False)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# `accelerate` 0.16.0 will have better support for customized saving
if args.save_only_adapter:
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for model in models:
if isinstance(model, type(unwrap_model(unet))): # save adapter only
adapter_state_dict = OrderedDict()
adapter_state_dict["image_proj"] = model.encoder_hid_proj.image_projection_layers[0].state_dict()
adapter_state_dict["ip_adapter"] = torch.nn.ModuleList(model.attn_processors.values()).state_dict()
torch.save(adapter_state_dict, os.path.join(output_dir, "adapter_ckpt.pt"))
weights.pop()
def load_model_hook(models, input_dir):
while len(models) > 0:
# pop models so that they are not loaded again
model = models.pop()
if isinstance(model, type(accelerator.unwrap_model(unet))):
adapter_state_dict = torch.load(os.path.join(input_dir, "adapter_ckpt.pt"), map_location="cpu")
if list(adapter_state_dict.keys()) != ["image_proj", "ip_adapter"]:
from module.ip_adapter.utils import revise_state_dict
adapter_state_dict = revise_state_dict(adapter_state_dict)
model.encoder_hid_proj.image_projection_layers[0].load_state_dict(adapter_state_dict["image_proj"], strict=True)
missing, unexpected = torch.nn.ModuleList(model.attn_processors.values()).load_state_dict(adapter_state_dict["ip_adapter"], strict=False)
if len(unexpected) > 0:
raise ValueError(f"Unexpected keys: {unexpected}")
if len(missing) > 0:
for mk in missing:
if "ln" not in mk:
raise ValueError(f"Missing keys: {missing}")
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co./docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
if args.gradient_checkpointing:
unet.enable_gradient_checkpointing()
vae.enable_gradient_checkpointing()
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
# Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
# Optimizer creation.
ip_params, non_ip_params = seperate_ip_params_from_unet(unet)
params_to_optimize = ip_params
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Instantiate Loss.
losses_configs: LossesConfig = pyrallis.load(LossesConfig, open(args.losses_config_path, "r"))
diffusion_losses = list()
for loss_config in losses_configs.diffusion_losses:
logger.info(f"Loading diffusion loss: {loss_config.name}")
loss = namedtuple("loss", ["loss", "weight"])
loss_class = eval(loss_config.name)
diffusion_losses.append(loss(loss_class(visualize_every_k=loss_config.visualize_every_k,
dtype=weight_dtype,
accelerator=accelerator,
**loss_config.init_params), weight=loss_config.weight))
# SDXL additional condition that will be added to time embedding.
def compute_time_ids(original_size, crops_coords_top_left):
# Adapted from pipeline.StableDiffusionXLPipeline._get_add_time_ids
target_size = (args.resolution, args.resolution)
add_time_ids = list(original_size + crops_coords_top_left + target_size)
add_time_ids = torch.tensor([add_time_ids])
add_time_ids = add_time_ids.to(accelerator.device, dtype=weight_dtype)
return add_time_ids
# Text prompt embeddings.
@torch.no_grad()
def compute_embeddings(batch, text_encoders, tokenizers, drop_idx=None, is_train=True):
prompt_batch = batch[args.caption_column]
if drop_idx is not None:
for i in range(len(prompt_batch)):
prompt_batch[i] = "" if drop_idx[i] else prompt_batch[i]
prompt_embeds, pooled_prompt_embeds = encode_prompt(
prompt_batch, text_encoders, tokenizers, is_train
)
add_time_ids = torch.cat(
[compute_time_ids(s, c) for s, c in zip(batch["original_sizes"], batch["crop_top_lefts"])]
)
prompt_embeds = prompt_embeds.to(accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
add_time_ids = add_time_ids.to(accelerator.device, dtype=prompt_embeds.dtype)
sdxl_added_cond_kwargs = {"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}
return prompt_embeds, sdxl_added_cond_kwargs
# Move pixels into latents.
@torch.no_grad()
def convert_to_latent(pixels):
model_input = vae.encode(pixels).latent_dist.sample()
model_input = model_input * vae.config.scaling_factor
if args.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
return model_input
# Datasets and other data moduels.
deg_pipeline = RealESRGANDegradation(device=accelerator.device, resolution=args.resolution)
compute_embeddings_fn = functools.partial(
compute_embeddings,
text_encoders=[text_encoder, text_encoder_2],
tokenizers=[tokenizer, tokenizer_2],
is_train=True,
)
datasets = []
datasets_name = []
datasets_weights = []
if args.data_config_path is not None:
data_config: DataConfig = pyrallis.load(DataConfig, open(args.data_config_path, "r"))
for single_dataset in data_config.datasets:
datasets_weights.append(single_dataset.dataset_weight)
datasets_name.append(single_dataset.dataset_folder)
dataset_dir = os.path.join(args.train_data_dir, single_dataset.dataset_folder)
image_dataset = get_train_dataset(dataset_dir, dataset_dir, args, accelerator)
image_dataset = prepare_train_dataset(image_dataset, accelerator, deg_pipeline)
datasets.append(image_dataset)
# TODO: Validation dataset
if data_config.val_dataset is not None:
val_dataset = get_train_dataset(dataset_name, dataset_dir, args, accelerator)
logger.info(f"Datasets mixing: {list(zip(datasets_name, datasets_weights))}")
# Mix training datasets.
sampler_train = None
if len(datasets) == 1:
train_dataset = datasets[0]
else:
# Weighted each dataset
train_dataset = torch.utils.data.ConcatDataset(datasets)
dataset_weights = []
for single_dataset, single_weight in zip(datasets, datasets_weights):
dataset_weights.extend([len(train_dataset) / len(single_dataset) * single_weight] * len(single_dataset))
sampler_train = torch.utils.data.WeightedRandomSampler(
weights=dataset_weights,
num_samples=len(dataset_weights)
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.train_batch_size,
sampler=sampler_train,
shuffle=True if sampler_train is None else False,
collate_fn=collate_fn,
num_workers=args.dataloader_num_workers
)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
# tensorboard cannot handle list types for config
tracker_config.pop("validation_prompt")
tracker_config.pop("validation_image")
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# Move vae, unet and text_encoder to device and cast to weight_dtype
if args.pretrained_vae_model_name_or_path is None:
# The VAE is fp32 to avoid NaN losses.
vae.to(accelerator.device, dtype=torch.float32)
else:
vae.to(accelerator.device, dtype=weight_dtype)
text_encoder.to(accelerator.device, dtype=weight_dtype)
text_encoder_2.to(accelerator.device, dtype=weight_dtype)
image_encoder.to(accelerator.device, dtype=weight_dtype)
importance_ratio = importance_ratio.to(accelerator.device)
for non_ip_param in non_ip_params:
non_ip_param.data = non_ip_param.data.to(dtype=weight_dtype)
for ip_param in ip_params:
ip_param.requires_grad_(True)
unet.to(accelerator.device)
# Final check.
for n, p in unet.named_parameters():
if p.requires_grad: assert p.dtype == torch.float32, n
else: assert p.dtype == weight_dtype, n
if args.sanity_check:
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
# Check input data
batch = next(iter(train_dataloader))
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"]))
images_log = log_validation(
unwrap_model(unet), vae, text_encoder, text_encoder_2, tokenizer, tokenizer_2,
noise_scheduler, image_encoder, image_processor, deg_pipeline,
args, accelerator, weight_dtype, step=0, lq_img=lq_img, gt_img=gt_img, is_final_validation=False, log_local=True
)
exit()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Optimization steps per epoch = {num_update_steps_per_epoch}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
trainable_models = [unet]
if args.gradient_checkpointing:
checkpoint_models = []
else:
checkpoint_models = []
image_logs = None
tic = time.time()
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
toc = time.time()
io_time = toc - tic
tic = toc
for model in trainable_models + checkpoint_models:
model.train()
with accelerator.accumulate(*trainable_models):
loss = torch.tensor(0.0)
# Drop conditions.
rand_tensor = torch.rand(batch["images"].shape[0])
drop_image_idx = rand_tensor < args.image_drop_rate
drop_text_idx = (rand_tensor >= args.image_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate)
drop_both_idx = (rand_tensor >= args.image_drop_rate + args.text_drop_rate) & (rand_tensor < args.image_drop_rate + args.text_drop_rate + args.cond_drop_rate)
drop_image_idx = drop_image_idx | drop_both_idx
drop_text_idx = drop_text_idx | drop_both_idx
# Get LQ embeddings
with torch.no_grad():
lq_img, gt_img = deg_pipeline(batch["images"], (batch["kernel"], batch["kernel2"], batch["sinc_kernel"]))
lq_pt = image_processor(
images=lq_img*0.5+0.5,
do_rescale=False, return_tensors="pt"
).pixel_values
image_embeds = prepare_training_image_embeds(
image_encoder, image_processor,
ip_adapter_image=lq_pt, ip_adapter_image_embeds=None,
device=accelerator.device, drop_rate=args.image_drop_rate, output_hidden_state=args.image_encoder_hidden_feature,
idx_to_replace=drop_image_idx
)
# Process text inputs.
prompt_embeds_input, added_conditions = compute_embeddings_fn(batch, drop_idx=drop_text_idx)
added_conditions["image_embeds"] = image_embeds
# Move inputs to latent space.
gt_img = gt_img.to(dtype=vae.dtype)
model_input = convert_to_latent(gt_img)
if args.pretrained_vae_model_name_or_path is None:
model_input = model_input.to(weight_dtype)
# Sample noise that we'll add to the latents.
noise = torch.randn_like(model_input)
bsz = model_input.shape[0]
# Sample a random timestep for each image.
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device)
# Add noise to the model input according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
loss_weights = extract_into_tensor(importance_ratio, timesteps, noise.shape) if args.importance_sampling else None
toc = time.time()
prepare_time = toc - tic
tic = time.time()
model_pred = unet(
noisy_model_input, timesteps,
encoder_hidden_states=prompt_embeds_input,
added_cond_kwargs=added_conditions,
return_dict=False
)[0]
diffusion_loss_arguments = {
"target": noise,
"predict": model_pred,
"prompt_embeddings_input": prompt_embeds_input,
"timesteps": timesteps,
"weights": loss_weights,
}
loss_dict = dict()
for loss_config in diffusion_losses:
non_weighted_loss = loss_config.loss(**diffusion_loss_arguments, accelerator=accelerator)
loss = loss + non_weighted_loss * loss_config.weight
loss_dict[loss_config.loss.__class__.__name__] = non_weighted_loss.item()
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
toc = time.time()
forward_time = toc - tic
tic = toc
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if global_step % args.validation_steps == 0:
image_logs = log_validation(unwrap_model(unet), vae,
text_encoder, text_encoder_2, tokenizer, tokenizer_2,
noise_scheduler, image_encoder, image_processor, deg_pipeline,
args, accelerator, weight_dtype, global_step, lq_img, gt_img, is_final_validation=False)
logs = {}
logs.update(loss_dict)
logs.update({
"lr": lr_scheduler.get_last_lr()[0],
"io_time": io_time,
"prepare_time": prepare_time,
"forward_time": forward_time
})
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
tic = time.time()
if global_step >= args.max_train_steps:
break
# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
accelerator.save_state(os.path.join(args.output_dir, "last"), safe_serialization=False)
# Run a final round of validation.
# Setting `vae`, `unet`, and `controlnet` to None to load automatically from `args.output_dir`.
image_logs = None
if args.validation_image is not None:
image_logs = log_validation(
unwrap_model(unet), vae,
text_encoder, text_encoder_2, tokenizer, tokenizer_2,
noise_scheduler, image_encoder, image_processor, deg_pipeline,
args, accelerator, weight_dtype, global_step,
)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args) |