import gradio as gr import torch from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda") def infer(image_input): #img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(image_input).convert('RGB') # unconditional image captioning inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16) out = model.generate(**inputs) caption = processor.decode(out[0], skip_special_tokens=True) print(caption) return caption css=""" #col-container {max-width: 910px; margin-left: auto; margin-right: auto;} a {text-decoration-line: underline; font-weight: 600;} """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown( """ # Image to Story Upload an image, get a story !

[![Duplicate this Space](https://huggingface.co./datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co./spaces/fffiloni/SplitTrack2MusicGen?duplicate=true) for longer audio, more control and no queue.

""" ) image_in = gr.Image(label="Image input", type="filepath") submit_btn = gr.Button('Sumbit') story = gr.Textbox(label="Generated Story") submit_btn.click(fn=infer, inputs=[image_in], outputs=[story]) demo.queue().launch()