Image-to-Story / app.py
fffiloni's picture
Update app.py
7175dd2
raw
history blame
2.27 kB
import gradio as gr
import torch
from PIL import Image
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
hf_token = os.environ.get('HF_TOKEN')
from gradio_client import Client
client = Client("https://fffiloni-test-llama-api.hf.space/", hf_token=hf_token)
def infer(image_input):
#img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
raw_image = Image.open(image_input).convert('RGB')
# unconditional image captioning
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
out = model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
print(caption)
llama_q = f"""
I'll give you a simple image caption, from i want you to provide a story that would fit well with the image.
Here's the music description :
{caption}
"""
result = client.predict(
llama_q, # str in 'Message' Textbox component
api_name="/predict"
)
print(f"Llama2 result: {result}")
return caption, result
css="""
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# Image to Story
Upload an image, get a story !
<br/>
<br/>
[![Duplicate this Space](https://huggingface.co./datasets/huggingface/badges/raw/main/duplicate-this-space-sm.svg)](https://huggingface.co./spaces/fffiloni/SplitTrack2MusicGen?duplicate=true) for longer audio, more control and no queue.</p>
"""
)
image_in = gr.Image(label="Image input", type="filepath")
submit_btn = gr.Button('Sumbit')
caption = gr.Textbox(label="Generated Caption")
story = gr.Textbox(label="generated Story")
submit_btn.click(fn=infer, inputs=[image_in], outputs=[caption, story])
demo.queue().launch()