#!/usr/bin/env python import gradio as gr from model import Model from settings import CACHE_EXAMPLES, MAX_SEED from utils import randomize_seed_fn caption = gr.load(name="spaces/fffiloni/CoCa-clone") def create_image_caption(image_init): cap = caption(image_init, "Beam search", 1.2, 0.5, 5, 20, fn_index=0) print("cap: " + cap) return cap, gr.update(visible=True) def create_demo(model: Model) -> gr.Blocks: with gr.Blocks() as demo: with gr.Box(): with gr.Row(elem_id='prompt-container'): image_init = gr.Image(type="filepath", source="upload") prompt = gr.Text( label='Prompt', show_label=False, max_lines=1, placeholder='Enter your prompt', visible=False).style(container=False) run_button = gr.Button('Run').style(full_width=False) result = gr.Model3D(label='Result', show_label=False) with gr.Accordion('Advanced options', open=False): seed = gr.Slider(label='Seed', minimum=0, maximum=MAX_SEED, step=1, value=0) randomize_seed = gr.Checkbox(label='Randomize seed', value=True) guidance_scale = gr.Slider(label='Guidance scale', minimum=1, maximum=20, step=0.1, value=15.0) num_inference_steps = gr.Slider( label='Number of inference steps', minimum=1, maximum=100, step=1, value=64) image_init.change(fn=create_image_caption, inputs=[image_init], outputs=[prompt, run_button]) inputs = [ prompt, seed, guidance_scale, num_inference_steps, ] prompt.submit( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, ).then( fn=model.run_text, inputs=inputs, outputs=result, ) run_button.click( fn=randomize_seed_fn, inputs=[seed, randomize_seed], outputs=seed, queue=False, ).then( fn=model.run_text, inputs=inputs, outputs=result, api_name='text-to-3d', ) return demo