from rp import * import matplotlib.pyplot as plt import numpy as np from matplotlib.widgets import Slider from matplotlib.patches import Polygon as Polygon import cv2 git_import('CommonSource') import rp.git.CommonSource.noise_warp as nw from easydict import EasyDict def select_polygon(image): fig, ax = plt.subplots() ax.imshow(image) ax.set_title("Left click to add points. Right click to undo. Close the window to finish.") path = [] def onclick(event): if event.button == 1: # Left click if event.xdata is not None and event.ydata is not None: path.append((event.xdata, event.ydata)) ax.clear() ax.imshow(image) ax.set_title("Left click to add points. Right click to undo. Close the window to finish.") for i in range(len(path)): if i > 0: ax.plot([path[i - 1][0], path[i][0]], [path[i - 1][1], path[i][1]], "r-") ax.plot(path[i][0], path[i][1], "ro") if len(path) > 1: ax.plot([path[-1][0], path[0][0]], [path[-1][1], path[0][1]], "r--") if len(path) > 2: polygon = Polygon(path, closed=True, alpha=0.3, facecolor="r", edgecolor="r") ax.add_patch(polygon) fig.canvas.draw() elif event.button == 3 and path: # Right click path.pop() ax.clear() ax.imshow(image) ax.set_title("Left click to add points. Right click to undo. Close the window to finish.") for i in range(len(path)): if i > 0: ax.plot([path[i - 1][0], path[i][0]], [path[i - 1][1], path[i][1]], "r-") ax.plot(path[i][0], path[i][1], "ro") if len(path) > 1: ax.plot([path[-1][0], path[0][0]], [path[-1][1], path[0][1]], "r--") if len(path) > 2: polygon = Polygon(path, closed=True, alpha=0.3, facecolor="r", edgecolor="r") ax.add_patch(polygon) fig.canvas.draw() cid = fig.canvas.mpl_connect("button_press_event", onclick) plt.show() fig.canvas.mpl_disconnect(cid) return path def select_polygon_and_path(image): fig, ax = plt.subplots() ax.imshow(image) ax.set_title("Left click to add points. Right click to undo. Close the window to finish.") polygon_path = [] movement_path = [] cid = fig.canvas.mpl_connect("button_press_event", onclick) plt.show() fig.canvas.mpl_disconnect(cid) return polygon_path, movement_path def select_path(image, polygon, num_frames=49): fig, ax = plt.subplots() plt.subplots_adjust(left=0.25, bottom=0.25) ax.imshow(image) ax.set_title("Left click to add points. Right click to undo. Close the window to finish.") path = [] # Add sliders for final scale and rotation ax_scale = plt.axes([0.25, 0.1, 0.65, 0.03]) ax_rot = plt.axes([0.25, 0.15, 0.65, 0.03]) scale_slider = Slider(ax_scale, "Final Scale", 0.1, 5.0, valinit=1) rot_slider = Slider(ax_rot, "Final Rotation", -360, 360, valinit=0) scales = [] rotations = [] def interpolate_transformations(n_points): # scales = np.linspace(1, scale_slider.val, n_points) scales = np.exp(np.linspace(0, np.log(scale_slider.val), n_points)) rotations = np.linspace(0, rot_slider.val, n_points) return scales, rotations def update_display(): ax.clear() ax.imshow(image) ax.set_title("Left click to add points. Right click to undo. Close the window to finish.") n_points = len(path) if n_points < 1: fig.canvas.draw_idle() return # Interpolate scales and rotations over the total number of points scales[:], rotations[:] = interpolate_transformations(n_points) origin = np.array(path[0]) for i in range(n_points): ax.plot(path[i][0], path[i][1], "bo") if i > 0: ax.plot([path[i - 1][0], path[i][0]], [path[i - 1][1], path[i][1]], "b-") # Apply transformation to the polygon transformed_polygon = apply_transformation(np.array(polygon), scales[i], rotations[i], origin) # Offset polygon to the current point relative to the first point position_offset = np.array(path[i]) - origin transformed_polygon += position_offset mpl_poly = Polygon( transformed_polygon, closed=True, alpha=0.3, facecolor="r", edgecolor="r", ) ax.add_patch(mpl_poly) fig.canvas.draw_idle() def onclick(event): if event.inaxes != ax: return if event.button == 1: # Left click path.append((event.xdata, event.ydata)) update_display() elif event.button == 3 and path: # Right click path.pop() update_display() def on_slider_change(val): update_display() scale_slider.on_changed(on_slider_change) rot_slider.on_changed(on_slider_change) scales, rotations = [], [] cid_click = fig.canvas.mpl_connect("button_press_event", onclick) plt.show() fig.canvas.mpl_disconnect(cid_click) # Final interpolation after the window is closed n_points = num_frames if n_points > 0: scales, rotations = interpolate_transformations(n_points) rotations = [-x for x in rotations] path = as_numpy_array(path) path = as_numpy_array([linterp(path, i) for i in np.linspace(0, len(path) - 1, num=n_points)]) return path, scales, rotations def animate_polygon(image, polygon, path, scales, rotations,interp=cv2.INTER_LINEAR): frames = [] transformed_polygons = [] origin = np.array(path[0]) h, w = image.shape[:2] for i in eta(range(len(path)), title="Creating frames for this layer..."): # Compute the affine transformation matrix theta = np.deg2rad(rotations[i]) scale = scales[i] a11 = scale * np.cos(theta) a12 = -scale * np.sin(theta) a21 = scale * np.sin(theta) a22 = scale * np.cos(theta) # Compute translation components tx = path[i][0] - (a11 * origin[0] + a12 * origin[1]) ty = path[i][1] - (a21 * origin[0] + a22 * origin[1]) M = np.array([[a11, a12, tx], [a21, a22, ty]]) # Apply the affine transformation to the image warped_image = cv2.warpAffine( image, M, (w, h), flags=interp, borderMode=cv2.BORDER_CONSTANT, borderValue=(0, 0, 0), ) # Transform the polygon points polygon_np = np.array(polygon) ones = np.ones(shape=(len(polygon_np), 1)) points_ones = np.hstack([polygon_np, ones]) transformed_polygon = M.dot(points_ones.T).T transformed_polygons.append(transformed_polygon) # Create a mask for the transformed polygon mask = np.zeros((h, w), dtype=np.uint8) cv2.fillPoly(mask, [np.int32(transformed_polygon)], 255) # Extract the polygon area from the warped image rgba_image = cv2.cvtColor(warped_image, cv2.COLOR_BGR2BGRA) alpha_channel = np.zeros((h, w), dtype=np.uint8) alpha_channel[mask == 255] = 255 rgba_image[:, :, 3] = alpha_channel # Set areas outside the polygon to transparent rgba_image[mask == 0] = (0, 0, 0, 0) frames.append(rgba_image) # return gather_vars("frames transformed_polygons") return EasyDict(frames=frames,transformed_polygons=transformed_polygons) def apply_transformation(polygon, scale, rotation, origin): # Translate polygon to origin translated_polygon = polygon - origin # Apply scaling scaled_polygon = translated_polygon * scale # Apply rotation theta = np.deg2rad(rotation) rotation_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) rotated_polygon = np.dot(scaled_polygon, rotation_matrix) # Translate back final_polygon = rotated_polygon + origin return final_polygon # def cogvlm_caption_video(video_path, prompt="Please describe this video in detail."): # import rp.web_evaluator as wev # # client = wev.Client("100.113.27.133") # result = client.evaluate("run_captioner(x,prompt=prompt)", x=video_path, prompt=prompt) # if result.errored: # raise result.error # return result.value if __name__ == "__main__": fansi_print(big_ascii_text("Go With The Flow!"), "yellow green", "bold") image_path = input_conditional( fansi("First Frame: Enter Image Path or URL", "blue cyan", "italic bold underlined"), lambda x: is_a_file(x.strip()) or is_valid_url(x.strip()), ).strip() print("Using path: " + fansi_highlight_path(image_path)) if is_video_file(image_path): fansi_print('Video path was given. Using first frame as image.') image=load_video(image_path,length=1)[0] else: image = load_image(image_path, use_cache=True) image = resize_image_to_fit(image, height=1440, allow_growth=False) rp.fansi_print("PRO TIP: Use this website to help write your captions: https://huggingface.co./spaces/THUDM/CogVideoX-5B-Space", 'blue cyan') prompt=input(fansi('Input the video caption >>> ','blue cyan','bold')) SCALE_FACTOR=1 #Adjust resolution to 720x480: resize then center-crop HEIGHT=480*SCALE_FACTOR WIDTH=720*SCALE_FACTOR image = resize_image_to_hold(image,height=HEIGHT,width=WIDTH) image = crop_image(image, height=HEIGHT,width=WIDTH, origin='center') title = input_default( fansi("Enter a title: ", "blue cyan", "italic bold underlined"), get_file_name( image_path, include_file_extension=False, ), ) output_folder=make_directory(get_unique_copy_path(title)) print("Output folder: " + fansi_highlight_path(output_folder)) fansi_print("How many layers?", "blue cyan", "italic bold underlined"), num_layers = input_integer( minimum=1, ) layer_videos = [] layer_polygons = [] layer_first_frame_masks = [] layer_noises = [] for layer_num in range(num_layers): layer_noise=np.random.randn(HEIGHT,WIDTH,18).astype(np.float32) fansi_print(f'You are currently working on layer #{layer_num+1} of {num_layers}','yellow orange','bold') if True or not "polygon" in vars() or input_yes_no("New Polygon?"): polygon = select_polygon(image) if True or not "animation" in vars() or input_yes_no("New Animation?"): animation = select_path(image, polygon) animation_output = animate_polygon(image, polygon, *animation) noise_output_1 = as_numpy_array(animate_polygon(layer_noise[:,:,3*0:3*1], polygon, *animation, interp=cv2.INTER_NEAREST).frames) noise_output_2 = as_numpy_array(animate_polygon(layer_noise[:,:,3*1:3*2], polygon, *animation, interp=cv2.INTER_NEAREST).frames) noise_output_3 = as_numpy_array(animate_polygon(layer_noise[:,:,3*2:3*3], polygon, *animation, interp=cv2.INTER_NEAREST).frames) noise_output_4 = as_numpy_array(animate_polygon(layer_noise[:,:,3*3:3*4], polygon, *animation, interp=cv2.INTER_NEAREST).frames) noise_output_5 = as_numpy_array(animate_polygon(layer_noise[:,:,3*4:3*5], polygon, *animation, interp=cv2.INTER_NEAREST).frames) noise_output_6 = as_numpy_array(animate_polygon(layer_noise[:,:,3*5:3*6], polygon, *animation, interp=cv2.INTER_NEAREST).frames) noise_warp_output = np.concatenate( [ noise_output_1[:,:,:,:3], noise_output_2[:,:,:,:3], noise_output_3[:,:,:,:3], noise_output_4[:,:,:,:3], noise_output_5[:,:,:,:3], noise_output_6[:,:,:,:1], ], axis=3,#THWC ) frames, transformed_polygons = destructure(animation_output) mask = get_image_alpha(frames[0]) > 0 layer_polygons.append(transformed_polygons) layer_first_frame_masks.append(mask) layer_videos.append(frames) layer_noises.append(noise_warp_output) if True or input_yes_no("Inpaint background?"): total_mask = sum(layer_first_frame_masks).astype(bool) background = cv_inpaint_image(image, mask=total_mask) else: background = "https://t3.ftcdn.net/jpg/02/76/96/64/360_F_276966430_HsEI96qrQyeO4wkcnXtGZOm0Qu4TKCgR.jpg" background = load_image(background, use_cache=True) background = cv_resize_image(background, get_image_dimensions(image)) background=as_rgba_image(background) ### output_frames = [ overlay_images( background, *frame_layers, ) for frame_layers in eta(list_transpose(layer_videos),title=fansi("Compositing all frames of the video...",'green','bold')) ] output_frames=as_numpy_array(output_frames) output_video_file=save_video_mp4(output_frames, output_folder+'/'+title + ".mp4", video_bitrate="max") output_mask_file = save_video_mp4( [ sum([get_image_alpha(x) for x in layers]) for layers in list_transpose(layer_videos) ], output_folder + "/" + title + "_mask.mp4", video_bitrate="max", ) ### fansi_print("Warping noise...",'yellow green','bold italic') output_noises = np.random.randn(1,HEIGHT,WIDTH,16) output_noises=np.repeat(output_noises,49,axis=0) for layer_num in range(num_layers): fansi_print(f'Warping noise for layer #{layer_num+1} of {num_layers}','green','bold') for frame in eta(range(49),title='frame number'): noise_mask = get_image_alpha(layer_videos[layer_num][frame])[:,:,None]>0 noise_video_layer = layer_noises[layer_num][frame] output_noises[frame]*=(noise_mask==0) output_noises[frame]+=noise_video_layer*noise_mask #display_image((noise_mask * noise_video_layer)[:,:,:3]) display_image(output_noises[frame][:,:,:3]/5+.5) import einops import torch torch_noises=torch.tensor(output_noises) torch_noises=einops.rearrange(torch_noises,'F H W C -> F C H W') # small_torch_noises=[] for i in eta(range(49),title='Regaussianizing'): torch_noises[i]=nw.regaussianize(torch_noises[i])[0] small_torch_noise=nw.resize_noise(torch_noises[i],(480//8,720//8)) small_torch_noises.append(small_torch_noise) #display_image(as_numpy_image(small_torch_noise[:3])/5+.5) display_image(as_numpy_image(torch_noises[i,:3])/5+.5) small_torch_noises=torch.stack(small_torch_noises)#DOWNSAMPLED NOISE FOR CARTRIDGE! ### cartridge={} cartridge['instance_noise']=small_torch_noises.bfloat16() cartridge['instance_video']=(as_torch_images(output_frames)*2-1).bfloat16() cartridge['instance_prompt']=prompt output_cartridge_file=object_to_file(cartridge, output_folder + "/" + title + "_cartridge.pkl") ### output_polygons_file=output_folder+'/'+'polygons.npy' polygons=as_numpy_array(layer_polygons) np.save(output_polygons_file,polygons) print() print(fansi('Saved outputs:','green','bold')) print(fansi(' - Saved video: ','green','bold'),fansi_highlight_path(get_relative_path(output_video_file))) print(fansi(' - Saved masks: ','green','bold'),fansi_highlight_path(get_relative_path(output_mask_file))) print(fansi(' - Saved shape: ','green','bold'),fansi_highlight_path(output_polygons_file)) print(fansi(' - Saved cartridge: ','green','bold'),fansi_highlight_path(output_cartridge_file)) print("Press CTRL+C to exit") display_video(video_with_progress_bar(output_frames), loop=True)