File size: 6,532 Bytes
10b581c
 
 
ef5add3
9dab6c2
10b581c
9dab6c2
 
10b581c
70f2266
10b581c
 
 
 
 
 
5694315
10b581c
 
 
 
 
 
 
 
 
 
 
 
5694315
9dab6c2
5694315
 
 
9dab6c2
5694315
ef5add3
51df367
 
 
ef5add3
 
 
 
 
 
 
 
 
 
 
 
5694315
 
 
9dab6c2
45a9d7f
51df367
 
 
dfaa5fc
cc5ea83
51df367
df253f2
dfe3b1e
 
51df367
1b6ca43
10b581c
5694315
51df367
 
 
 
 
 
 
 
 
 
 
 
 
df253f2
51df367
 
 
 
 
 
 
 
 
 
 
5694315
51df367
10b581c
 
ef5add3
10b581c
 
5694315
66d038e
10b581c
 
 
6a76f54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10b581c
 
 
 
192f60f
10b581c
 
 
 
 
 
 
 
ecf6d80
 
6a76f54
 
 
 
e65bce3
6a76f54
10b581c
 
ecf6d80
10b581c
 
 
 
 
 
 
 
df253f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import gradio as gr
import os
import torch
import gc
from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
from diffusers.utils import export_to_video, load_image
from transformers import T5EncoderModel, T5Tokenizer

from datetime import datetime
import random

from huggingface_hub import hf_hub_download

# Ensure 'checkpoint' directory exists
os.makedirs("checkpoints", exist_ok=True)

# Download LoRA weights
hf_hub_download(
    repo_id="wenqsun/DimensionX",
    filename="orbit_left_lora_weights.safetensors",
    local_dir="checkpoints"
)

hf_hub_download(
    repo_id="wenqsun/DimensionX",
    filename="orbit_up_lora_weights.safetensors",
    local_dir="checkpoints"
)

# Load models in the global scope
model_id = "THUDM/CogVideoX-5b-I2V"
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu")
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu")
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu")
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)

# Add this near the top after imports
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'

def find_and_move_object_to_cpu():
    for obj in gc.get_objects():
        try:
            if isinstance(obj, torch.nn.Module):
                if any(param.is_cuda for param in obj.parameters()):
                    obj.to('cpu')
                if any(buf.is_cuda for buf in obj.buffers()):
                    obj.to('cpu')
        except Exception as e:
            pass

def clear_gpu():
    torch.cuda.empty_cache()
    torch.cuda.synchronize()
    gc.collect()

def infer(image_path, prompt, orbit_type, progress=gr.Progress(track_tqdm=True)):
    # Move everything to CPU initially
    pipe.to("cpu")
    torch.cuda.empty_cache()
    
    lora_path = "checkpoints/"
    weight_name = "orbit_left_lora_weights.safetensors" if orbit_type == "Left" else "orbit_up_lora_weights.safetensors"
    lora_rank = 256
    adapter_timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")

    # Load LoRA weights on CPU
    pipe.load_lora_weights(lora_path, weight_name=weight_name, adapter_name=f"adapter_{adapter_timestamp}")
    pipe.fuse_lora(lora_scale=1 / lora_rank)
    
    try:
        # Move to GPU just before inference
        pipe.to("cuda")
        torch.cuda.empty_cache()
        
        prompt = f"{prompt}. High quality, ultrarealistic detail and breath-taking movie-like camera shot."
        image = load_image(image_path)
        seed = random.randint(0, 2**8 - 1)
        
        with torch.inference_mode():
            video = pipe(
                image, 
                prompt, 
                num_inference_steps=50,
                guidance_scale=7.0,
                use_dynamic_cfg=True,
                generator=torch.Generator(device="cpu").manual_seed(seed)
            )
    finally:
        # Ensure cleanup happens even if inference fails
        pipe.to("cpu")
        pipe.unfuse_lora()
        pipe.unload_lora_weights()
        torch.cuda.empty_cache()
        gc.collect()
    
    # Generate output video
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    export_to_video(video.frames[0], f"output_{timestamp}.mp4", fps=8)
    
    return f"output_{timestamp}.mp4"

# Set up Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# DimensionX")
        gr.Markdown("### Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/wenqsun/DimensionX">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://chenshuo20.github.io/DimensionX/">
                <img src='https://img.shields.io/badge/Project-Page-green'>
            </a>
			<a href="https://arxiv.org/abs/2411.04928">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co./spaces/fffiloni/DimensionX?duplicate=true">
				<img src="https://huggingface.co./datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
			</a>
			<a href="https://huggingface.co./fffiloni">
				<img src="https://huggingface.co./datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
			</a>
        </div>
        """)
        with gr.Row():
            with gr.Column():
                image_in = gr.Image(label="Image Input", type="filepath")
                prompt = gr.Textbox(label="Prompt")
                orbit_type = gr.Radio(label="Orbit type", choices=["Left", "Up"], value="Left", interactive=True)
                submit_btn = gr.Button("Submit")
            with gr.Column():
                video_out = gr.Video(label="Video output")
                examples = gr.Examples(
                    examples = [
                        [
                            "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
                            "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
                            "Left",
                            "./examples/output_astronaut_left.mp4"
                        ],
                        [
                            "https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/diffusers/astronaut.jpg",
                            "An astronaut hatching from an egg, on the surface of the moon, the darkness and depth of space realised in the background.",
                            "Up",
                            "./examples/output_astronaut_up.mp4"
                        ]
                    ],
                    inputs=[image_in, prompt, orbit_type, video_out]
                )

    submit_btn.click(
        fn=infer,
        inputs=[image_in, prompt, orbit_type],
        outputs=[video_out]
    )

demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)