import cv2 import numpy as np import os import torch.nn.functional as F def resize_flow(flow, newh, neww): oldh, oldw = flow.shape[0:2] flow = cv2.resize(flow, (neww, newh), interpolation=cv2.INTER_LINEAR) flow[:, :, 0] *= neww / oldw flow[:, :, 1] *= newh / oldh return flow def resize_flow_pytorch(flow, newh, neww): oldh, oldw = flow.shape[-2:] flow = F.interpolate(flow, (newh, neww), mode='bilinear') flow[:, :, 0] *= neww / oldw flow[:, :, 1] *= newh / oldh return flow def imwrite(img, file_path, params=None, auto_mkdir=True): if auto_mkdir: dir_name = os.path.abspath(os.path.dirname(file_path)) os.makedirs(dir_name, exist_ok=True) return cv2.imwrite(file_path, img, params) def flowread(flow_path, quantize=False, concat_axis=0, *args, **kwargs): """Read an optical flow map. Args: flow_path (ndarray or str): Flow path. quantize (bool): whether to read quantized pair, if set to True, remaining args will be passed to :func:`dequantize_flow`. concat_axis (int): The axis that dx and dy are concatenated, can be either 0 or 1. Ignored if quantize is False. Returns: ndarray: Optical flow represented as a (h, w, 2) numpy array """ if quantize: assert concat_axis in [0, 1] cat_flow = cv2.imread(flow_path, cv2.IMREAD_UNCHANGED) if cat_flow.ndim != 2: raise IOError(f'{flow_path} is not a valid quantized flow file, its dimension is {cat_flow.ndim}.') assert cat_flow.shape[concat_axis] % 2 == 0 dx, dy = np.split(cat_flow, 2, axis=concat_axis) flow = dequantize_flow(dx, dy, *args, **kwargs) else: with open(flow_path, 'rb') as f: try: header = f.read(4).decode('utf-8') except Exception: raise IOError(f'Invalid flow file: {flow_path}') else: if header != 'PIEH': raise IOError(f'Invalid flow file: {flow_path}, header does not contain PIEH') w = np.fromfile(f, np.int32, 1).squeeze() h = np.fromfile(f, np.int32, 1).squeeze() # flow = np.fromfile(f, np.float32, w * h * 2).reshape((h, w, 2)) flow = np.fromfile(f, np.float16, w * h * 2).reshape((h, w, 2)) return flow.astype(np.float32) def flowwrite(flow, filename, quantize=False, concat_axis=0, *args, **kwargs): """Write optical flow to file. If the flow is not quantized, it will be saved as a .flo file losslessly, otherwise a jpeg image which is lossy but of much smaller size. (dx and dy will be concatenated horizontally into a single image if quantize is True.) Args: flow (ndarray): (h, w, 2) array of optical flow. filename (str): Output filepath. quantize (bool): Whether to quantize the flow and save it to 2 jpeg images. If set to True, remaining args will be passed to :func:`quantize_flow`. concat_axis (int): The axis that dx and dy are concatenated, can be either 0 or 1. Ignored if quantize is False. """ dir_name = os.path.abspath(os.path.dirname(filename)) os.makedirs(dir_name, exist_ok=True) if not quantize: with open(filename, 'wb') as f: f.write('PIEH'.encode('utf-8')) np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f) # flow = flow.astype(np.float32) flow = flow.astype(np.float16) flow.tofile(f) f.flush() else: assert concat_axis in [0, 1] dx, dy = quantize_flow(flow, *args, **kwargs) dxdy = np.concatenate((dx, dy), axis=concat_axis) # os.makedirs(os.path.dirname(filename), exist_ok=True) cv2.imwrite(filename, dxdy) # imwrite(dxdy, filename) def quantize_flow(flow, max_val=0.02, norm=True): """Quantize flow to [0, 255]. After this step, the size of flow will be much smaller, and can be dumped as jpeg images. Args: flow (ndarray): (h, w, 2) array of optical flow. max_val (float): Maximum value of flow, values beyond [-max_val, max_val] will be truncated. norm (bool): Whether to divide flow values by image width/height. Returns: tuple[ndarray]: Quantized dx and dy. """ h, w, _ = flow.shape dx = flow[..., 0] dy = flow[..., 1] if norm: dx = dx / w # avoid inplace operations dy = dy / h # use 255 levels instead of 256 to make sure 0 is 0 after dequantization. flow_comps = [quantize(d, -max_val, max_val, 255, np.uint8) for d in [dx, dy]] return tuple(flow_comps) def dequantize_flow(dx, dy, max_val=0.02, denorm=True): """Recover from quantized flow. Args: dx (ndarray): Quantized dx. dy (ndarray): Quantized dy. max_val (float): Maximum value used when quantizing. denorm (bool): Whether to multiply flow values with width/height. Returns: ndarray: Dequantized flow. """ assert dx.shape == dy.shape assert dx.ndim == 2 or (dx.ndim == 3 and dx.shape[-1] == 1) dx, dy = [dequantize(d, -max_val, max_val, 255) for d in [dx, dy]] if denorm: dx *= dx.shape[1] dy *= dx.shape[0] flow = np.dstack((dx, dy)) return flow def quantize(arr, min_val, max_val, levels, dtype=np.int64): """Quantize an array of (-inf, inf) to [0, levels-1]. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the quantized array. Returns: tuple: Quantized array. """ if not (isinstance(levels, int) and levels > 1): raise ValueError(f'levels must be a positive integer, but got {levels}') if min_val >= max_val: raise ValueError(f'min_val ({min_val}) must be smaller than max_val ({max_val})') arr = np.clip(arr, min_val, max_val) - min_val quantized_arr = np.minimum(np.floor(levels * arr / (max_val - min_val)).astype(dtype), levels - 1) return quantized_arr def dequantize(arr, min_val, max_val, levels, dtype=np.float64): """Dequantize an array. Args: arr (ndarray): Input array. min_val (scalar): Minimum value to be clipped. max_val (scalar): Maximum value to be clipped. levels (int): Quantization levels. dtype (np.type): The type of the dequantized array. Returns: tuple: Dequantized array. """ if not (isinstance(levels, int) and levels > 1): raise ValueError(f'levels must be a positive integer, but got {levels}') if min_val >= max_val: raise ValueError(f'min_val ({min_val}) must be smaller than max_val ({max_val})') dequantized_arr = (arr + 0.5).astype(dtype) * (max_val - min_val) / levels + min_val return dequantized_arr