import gc import copy import cv2 import os import numpy as np import torch import torchvision from einops import repeat from PIL import Image, ImageFilter from diffusers import ( AutoencoderKL, DDPMScheduler, UniPCMultistepScheduler, LCMScheduler, ) from diffusers.schedulers import TCDScheduler from diffusers.image_processor import PipelineImageInput, VaeImageProcessor from diffusers.utils.torch_utils import randn_tensor from transformers import AutoTokenizer, PretrainedConfig from libs.unet_motion_model import MotionAdapter, UNetMotionModel from libs.brushnet_CA import BrushNetModel from libs.unet_2d_condition import UNet2DConditionModel from diffueraser.pipeline_diffueraser import StableDiffusionDiffuEraserPipeline checkpoints = { "2-Step": ["pcm_{}_smallcfg_2step_converted.safetensors", 2, 0.0], "4-Step": ["pcm_{}_smallcfg_4step_converted.safetensors", 4, 0.0], "8-Step": ["pcm_{}_smallcfg_8step_converted.safetensors", 8, 0.0], "16-Step": ["pcm_{}_smallcfg_16step_converted.safetensors", 16, 0.0], "Normal CFG 4-Step": ["pcm_{}_normalcfg_4step_converted.safetensors", 4, 7.5], "Normal CFG 8-Step": ["pcm_{}_normalcfg_8step_converted.safetensors", 8, 7.5], "Normal CFG 16-Step": ["pcm_{}_normalcfg_16step_converted.safetensors", 16, 7.5], "LCM-Like LoRA": [ "pcm_{}_lcmlike_lora_converted.safetensors", 4, 0.0, ], } def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str): text_encoder_config = PretrainedConfig.from_pretrained( pretrained_model_name_or_path, subfolder="text_encoder", revision=revision, ) model_class = text_encoder_config.architectures[0] if model_class == "CLIPTextModel": from transformers import CLIPTextModel return CLIPTextModel elif model_class == "RobertaSeriesModelWithTransformation": from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation return RobertaSeriesModelWithTransformation else: raise ValueError(f"{model_class} is not supported.") def resize_frames(frames, size=None): if size is not None: out_size = size process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) frames = [f.resize(process_size) for f in frames] else: out_size = frames[0].size process_size = (out_size[0]-out_size[0]%8, out_size[1]-out_size[1]%8) if not out_size == process_size: frames = [f.resize(process_size) for f in frames] return frames def read_mask(validation_mask, fps, n_total_frames, img_size, mask_dilation_iter, frames): cap = cv2.VideoCapture(validation_mask) if not cap.isOpened(): print("Error: Could not open mask video.") exit() mask_fps = cap.get(cv2.CAP_PROP_FPS) if mask_fps != fps: cap.release() raise ValueError("The frame rate of all input videos needs to be consistent.") masks = [] masked_images = [] idx = 0 while True: ret, frame = cap.read() if not ret: break if(idx >= n_total_frames): break mask = Image.fromarray(frame[...,::-1]).convert('L') if mask.size != img_size: mask = mask.resize(img_size, Image.NEAREST) mask = np.asarray(mask) m = np.array(mask > 0).astype(np.uint8) m = cv2.erode(m, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)), iterations=1) m = cv2.dilate(m, cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3)), iterations=mask_dilation_iter) mask = Image.fromarray(m * 255) masks.append(mask) masked_image = np.array(frames[idx])*(1-(np.array(mask)[:,:,np.newaxis].astype(np.float32)/255)) masked_image = Image.fromarray(masked_image.astype(np.uint8)) masked_images.append(masked_image) idx += 1 cap.release() return masks, masked_images def read_priori(priori, fps, n_total_frames, img_size): cap = cv2.VideoCapture(priori) if not cap.isOpened(): print("Error: Could not open video.") exit() priori_fps = cap.get(cv2.CAP_PROP_FPS) if priori_fps != fps: cap.release() raise ValueError("The frame rate of all input videos needs to be consistent.") prioris=[] idx = 0 while True: ret, frame = cap.read() if not ret: break if(idx >= n_total_frames): break img = Image.fromarray(frame[...,::-1]) if img.size != img_size: img = img.resize(img_size) prioris.append(img) idx += 1 cap.release() os.remove(priori) # remove priori return prioris def read_video(validation_image, video_length, nframes, max_img_size): vframes, aframes, info = torchvision.io.read_video(filename=validation_image, pts_unit='sec', end_pts=video_length) # RGB fps = info['video_fps'] n_total_frames = int(video_length * fps) n_clip = int(np.ceil(n_total_frames/nframes)) frames = list(vframes.numpy())[:n_total_frames] frames = [Image.fromarray(f) for f in frames] max_size = max(frames[0].size) if(max_size<256): raise ValueError("The resolution of the uploaded video must be larger than 256x256.") if(max_size>4096): raise ValueError("The resolution of the uploaded video must be smaller than 4096x4096.") if max_size>max_img_size: ratio = max_size/max_img_size ratio_size = (int(frames[0].size[0]/ratio),int(frames[0].size[1]/ratio)) img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8) resize_flag=True elif (frames[0].size[0]%8==0) and (frames[0].size[1]%8==0): img_size = frames[0].size resize_flag=False else: ratio_size = frames[0].size img_size = (ratio_size[0]-ratio_size[0]%8, ratio_size[1]-ratio_size[1]%8) resize_flag=True if resize_flag: frames = resize_frames(frames, img_size) img_size = frames[0].size return frames, fps, img_size, n_clip, n_total_frames class DiffuEraser: def __init__( self, device, base_model_path, vae_path, diffueraser_path, revision=None, ckpt="Normal CFG 4-Step", mode="sd15", loaded=None): self.device = device ## load model self.vae = AutoencoderKL.from_pretrained(vae_path) self.noise_scheduler = DDPMScheduler.from_pretrained(base_model_path, subfolder="scheduler", prediction_type="v_prediction", timestep_spacing="trailing", rescale_betas_zero_snr=True ) self.tokenizer = AutoTokenizer.from_pretrained( base_model_path, subfolder="tokenizer", use_fast=False, ) text_encoder_cls = import_model_class_from_model_name_or_path(base_model_path,revision) self.text_encoder = text_encoder_cls.from_pretrained( base_model_path, subfolder="text_encoder" ) self.brushnet = BrushNetModel.from_pretrained(diffueraser_path, subfolder="brushnet") self.unet_main = UNetMotionModel.from_pretrained( diffueraser_path, subfolder="unet_main", ) ## set pipeline self.pipeline = StableDiffusionDiffuEraserPipeline.from_pretrained( base_model_path, vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet_main, brushnet=self.brushnet ).to(self.device, torch.float16) self.pipeline.scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config) self.pipeline.set_progress_bar_config(disable=True) self.noise_scheduler = UniPCMultistepScheduler.from_config(self.pipeline.scheduler.config) self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) ## use PCM self.ckpt = ckpt PCM_ckpts = checkpoints[ckpt][0].format(mode) self.guidance_scale = checkpoints[ckpt][2] if loaded != (ckpt + mode): self.pipeline.load_lora_weights( "weights/PCM_Weights", weight_name=PCM_ckpts, subfolder=mode ) loaded = ckpt + mode if ckpt == "LCM-Like LoRA": self.pipeline.scheduler = LCMScheduler() else: self.pipeline.scheduler = TCDScheduler( num_train_timesteps=1000, beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", timestep_spacing="trailing", ) self.num_inference_steps = checkpoints[ckpt][1] self.guidance_scale = 0 def forward(self, validation_image, validation_mask, priori, output_path, max_img_size = 1280, video_length=2, mask_dilation_iter=4, nframes=22, seed=None, revision = None, guidance_scale=None, blended=True): validation_prompt = "" # guidance_scale_final = self.guidance_scale if guidance_scale==None else guidance_scale if (max_img_size<256 or max_img_size>1920): raise ValueError("The max_img_size must be larger than 256, smaller than 1920.") ################ read input video ################ frames, fps, img_size, n_clip, n_total_frames = read_video(validation_image, video_length, nframes, max_img_size) video_len = len(frames) ################ read mask ################ validation_masks_input, validation_images_input = read_mask(validation_mask, fps, video_len, img_size, mask_dilation_iter, frames) ################ read priori ################ prioris = read_priori(priori, fps, n_total_frames, img_size) ## recheck n_total_frames = min(min(len(frames), len(validation_masks_input)), len(prioris)) if(n_total_frames<22): raise ValueError("The effective video duration is too short. Please make sure that the number of frames of video, mask, and priori is at least greater than 22 frames.") validation_masks_input = validation_masks_input[:n_total_frames] validation_images_input = validation_images_input[:n_total_frames] frames = frames[:n_total_frames] prioris = prioris[:n_total_frames] prioris = resize_frames(prioris) validation_masks_input = resize_frames(validation_masks_input) validation_images_input = resize_frames(validation_images_input) resized_frames = resize_frames(frames) ############################################## # DiffuEraser inference ############################################## print("DiffuEraser inference...") if seed is None: generator = None else: generator = torch.Generator(device=self.device).manual_seed(seed) ## random noise real_video_length = len(validation_images_input) tar_width, tar_height = validation_images_input[0].size shape = ( nframes, 4, tar_height//8, tar_width//8 ) if self.text_encoder is not None: prompt_embeds_dtype = self.text_encoder.dtype elif self.unet_main is not None: prompt_embeds_dtype = self.unet_main.dtype else: prompt_embeds_dtype = torch.float16 noise_pre = randn_tensor(shape, device=torch.device(self.device), dtype=prompt_embeds_dtype, generator=generator) noise = repeat(noise_pre, "t c h w->(repeat t) c h w", repeat=n_clip)[:real_video_length,...] ################ prepare priori ################ images_preprocessed = [] for image in prioris: image = self.image_processor.preprocess(image, height=tar_height, width=tar_width).to(dtype=torch.float32) image = image.to(device=torch.device(self.device), dtype=torch.float16) images_preprocessed.append(image) pixel_values = torch.cat(images_preprocessed) with torch.no_grad(): pixel_values = pixel_values.to(dtype=torch.float16) latents = [] num=4 for i in range(0, pixel_values.shape[0], num): latents.append(self.vae.encode(pixel_values[i : i + num]).latent_dist.sample()) latents = torch.cat(latents, dim=0) latents = latents * self.vae.config.scaling_factor #[(b f), c1, h, w], c1=4 torch.cuda.empty_cache() timesteps = torch.tensor([0], device=self.device) timesteps = timesteps.long() validation_masks_input_ori = copy.deepcopy(validation_masks_input) resized_frames_ori = copy.deepcopy(resized_frames) ################ Pre-inference ################ if n_total_frames > nframes*2: ## do pre-inference only when number of input frames is larger than nframes*2 ## sample step = n_total_frames / nframes sample_index = [int(i * step) for i in range(nframes)] sample_index = sample_index[:22] validation_masks_input_pre = [validation_masks_input[i] for i in sample_index] validation_images_input_pre = [validation_images_input[i] for i in sample_index] latents_pre = torch.stack([latents[i] for i in sample_index]) ## add proiri noisy_latents_pre = self.noise_scheduler.add_noise(latents_pre, noise_pre, timesteps) latents_pre = noisy_latents_pre with torch.no_grad(): latents_pre_out = self.pipeline( num_frames=nframes, prompt=validation_prompt, images=validation_images_input_pre, masks=validation_masks_input_pre, num_inference_steps=self.num_inference_steps, generator=generator, guidance_scale=guidance_scale_final, latents=latents_pre, ).latents torch.cuda.empty_cache() def decode_latents(latents, weight_dtype): latents = 1 / self.vae.config.scaling_factor * latents video = [] for t in range(latents.shape[0]): video.append(self.vae.decode(latents[t:t+1, ...].to(weight_dtype)).sample) video = torch.concat(video, dim=0) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 video = video.float() return video with torch.no_grad(): video_tensor_temp = decode_latents(latents_pre_out, weight_dtype=torch.float16) images_pre_out = self.image_processor.postprocess(video_tensor_temp, output_type="pil") torch.cuda.empty_cache() ## replace input frames with updated frames black_image = Image.new('L', validation_masks_input[0].size, color=0) for i,index in enumerate(sample_index): latents[index] = latents_pre_out[i] validation_masks_input[index] = black_image validation_images_input[index] = images_pre_out[i] resized_frames[index] = images_pre_out[i] else: latents_pre_out=None sample_index=None gc.collect() torch.cuda.empty_cache() ################ Frame-by-frame inference ################ ## add priori noisy_latents = self.noise_scheduler.add_noise(latents, noise, timesteps) latents = noisy_latents with torch.no_grad(): images = self.pipeline( num_frames=nframes, prompt=validation_prompt, images=validation_images_input, masks=validation_masks_input, num_inference_steps=self.num_inference_steps, generator=generator, guidance_scale=guidance_scale_final, latents=latents, ).frames images = images[:real_video_length] gc.collect() torch.cuda.empty_cache() ################ Compose ################ binary_masks = validation_masks_input_ori mask_blurreds = [] if blended: # blur, you can adjust the parameters for better performance for i in range(len(binary_masks)): mask_blurred = cv2.GaussianBlur(np.array(binary_masks[i]), (21, 21), 0)/255. binary_mask = 1-(1-np.array(binary_masks[i])/255.) * (1-mask_blurred) mask_blurreds.append(Image.fromarray((binary_mask*255).astype(np.uint8))) binary_masks = mask_blurreds comp_frames = [] for i in range(len(images)): mask = np.expand_dims(np.array(binary_masks[i]),2).repeat(3, axis=2).astype(np.float32)/255. img = (np.array(images[i]).astype(np.uint8) * mask \ + np.array(resized_frames_ori[i]).astype(np.uint8) * (1 - mask)).astype(np.uint8) comp_frames.append(Image.fromarray(img)) default_fps = fps writer = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), default_fps, comp_frames[0].size) for f in range(real_video_length): img = np.array(comp_frames[f]).astype(np.uint8) writer.write(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) writer.release() ################################ return output_path