Spaces:
Running
on
T4
Running
on
T4
import os, subprocess | |
import torch | |
def setup(): | |
install_cmds = [ | |
['pip', 'install', 'ftfy', 'gradio', 'regex', 'tqdm', 'transformers==4.21.2', 'timm', 'fairscale', 'requests'], | |
['pip', 'install', 'open_clip_torch'], | |
['pip', 'install', '-e', 'git+https://github.com/pharmapsychotic/BLIP.git@lib#egg=blip'], | |
['git', 'clone', '-b', 'open-clip', 'https://github.com/pharmapsychotic/clip-interrogator.git'] | |
] | |
for cmd in install_cmds: | |
print(subprocess.run(cmd, stdout=subprocess.PIPE).stdout.decode('utf-8')) | |
setup() | |
# download cache files | |
print("Download preprocessed cache files...") | |
CACHE_URLS = [ | |
'https://huggingface.co./pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_artists.pkl', | |
'https://huggingface.co./pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_flavors.pkl', | |
'https://huggingface.co./pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_mediums.pkl', | |
'https://huggingface.co./pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_movements.pkl', | |
'https://huggingface.co./pharma/ci-preprocess/resolve/main/ViT-H-14_laion2b_s32b_b79k_trendings.pkl', | |
] | |
os.makedirs('cache', exist_ok=True) | |
for url in CACHE_URLS: | |
print(subprocess.run(['wget', url, '-P', 'cache'], stdout=subprocess.PIPE).stdout.decode('utf-8')) | |
import sys | |
sys.path.append('src/blip') | |
sys.path.append('clip-interrogator') | |
import gradio as gr | |
from clip_interrogator import Config, Interrogator | |
config = Config() | |
config.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
config.blip_offload = False if torch.cuda.is_available() else True | |
config.chunk_size = 2048 | |
config.flavor_intermediate_count = 512 | |
config.blip_num_beams = 64 | |
ci = Interrogator(config) | |
def inference(image, mode, best_max_flavors): | |
image = image.convert('RGB') | |
if mode == 'best': | |
prompt_result = ci.interrogate(image, max_flavors=int(best_max_flavors)) | |
print("mode best: " + prompt_result) | |
return prompt_result | |
elif mode == 'classic': | |
prompt_result = ci.interrogate_classic(image) | |
print("mode classic: " + prompt_result) | |
return prompt_result | |
else: | |
prompt_result = ci.interrogate_fast(image) | |
print("mode fast: " + prompt_result) | |
return prompt_result | |
title = """ | |
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
margin-bottom: 10px; | |
" | |
> | |
<h1 style="font-weight: 600; margin-bottom: 7px;"> | |
CLIP Interrogator 2.1 | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;"> | |
Want to figure out what a good prompt might be to create new images like an existing one? | |
<br />The CLIP Interrogator is here to get you answers! | |
<br />This version is specialized for producing nice prompts for use with Stable Diffusion 2.0 using the ViT-H-14 OpenCLIP model! | |
</p> | |
</div> | |
""" | |
article = """ | |
<div style="text-align: center; max-width: 500px; margin: 0 auto;font-size: 94%;"> | |
<p> | |
Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/open-clip/clip_interrogator.ipynb">Google Colab</a> | |
</p> | |
<p> | |
Has this been helpful to you? Follow Pharma on twitter | |
<a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> | |
and check out more tools at his | |
<a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a> | |
</p> | |
</div> | |
""" | |
css = ''' | |
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
''' | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.HTML(title) | |
input_image = gr.Image(type='pil', elem_id="input-img") | |
with gr.Row(): | |
mode_input = gr.Radio(['best', 'classic', 'fast'], label='Select mode', value='best') | |
flavor_input = gr.Slider(minimum=2, maximum=24, step=2, value=4, label='best mode max flavors') | |
submit_btn = gr.Button("Submit") | |
output_text = gr.Textbox(label="Description Output", elem_id="output-txt") | |
examples=[['27E894C4-9375-48A1-A95D-CB2425416B4B.png', "best",4], ['DB362F56-BA98-4CA1-A999-A25AA94B723B.png',"fast",4]] | |
ex = gr.Examples(examples=examples, fn=inference, inputs=[input_image, mode_input, flavor_input], outputs=[output_text], cache_examples=False, run_on_click=True) | |
gr.HTML(article) | |
submit_btn.click(fn=inference, inputs=[input_image,mode_input,flavor_input], outputs=[output_text], api_name="clipi2") | |
demo.queue(max_size=32).launch(show_api=False) |