Spaces:
Sleeping
Sleeping
import spaces | |
import gradio as gr | |
import os | |
import numpy as np | |
import random | |
from huggingface_hub import login, ModelCard | |
import torch | |
from diffusers import StableDiffusionXLPipeline, AutoencoderKL | |
from blora_utils import BLOCKS, filter_lora, scale_lora | |
hf_token = os.environ.get("YOUR_HF_TOKEN_WITH_READ_PERMISSION") | |
login(token=hf_token) | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
SAMPLE_MODEL_IDS = [ | |
'lora-library/B-LoRA-teddybear', | |
'lora-library/B-LoRA-bull', | |
'lora-library/B-LoRA-wolf_plushie', | |
'lora-library/B-LoRA-pen_sketch', | |
'lora-library/B-LoRA-cartoon_line', | |
'lora-library/B-LoRA-child', | |
'lora-library/B-LoRA-vase', | |
'lora-library/B-LoRA-scary_mug', | |
'lora-library/B-LoRA-statue', | |
'lora-library/B-LoRA-colorful_teapot', | |
'lora-library/B-LoRA-grey_sloth_plushie', | |
'lora-library/B-LoRA-teapot', | |
'lora-library/B-LoRA-backpack_dog', | |
'lora-library/B-LoRA-buddha', | |
'lora-library/B-LoRA-dog6', | |
'lora-library/B-LoRA-poop_emoji', | |
'lora-library/B-LoRA-pot', | |
'lora-library/B-LoRA-fat_bird', | |
'lora-library/B-LoRA-elephant', | |
'lora-library/B-LoRA-metal_bird', | |
'lora-library/B-LoRA-cat', | |
'lora-library/B-LoRA-dog2', | |
'lora-library/B-LoRA-drawing1', | |
'lora-library/B-LoRA-village_oil', | |
'lora-library/B-LoRA-watercolor', | |
'lora-library/B-LoRA-house_3d', | |
'lora-library/B-LoRA-ink_sketch', | |
'lora-library/B-LoRA-drawing3', | |
'lora-library/B-LoRA-crayon_drawing', | |
'lora-library/B-LoRA-kiss', | |
'lora-library/B-LoRA-drawing4', | |
'lora-library/B-LoRA-working_cartoon', | |
'lora-library/B-LoRA-painting', | |
'lora-library/B-LoRA-drawing2' | |
'lora-library/B-LoRA-multi-dog2', | |
] | |
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) | |
pipeline = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
vae=vae, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
def load_b_lora_to_unet(pipe, content_lora_model_id: str = '', style_lora_model_id: str = '', content_alpha: float = 1., | |
style_alpha: float = 1.) -> None: | |
try: | |
# Get Content B-LoRA SD | |
if content_lora_model_id: | |
content_B_LoRA_sd, _ = pipe.lora_state_dict(content_lora_model_id, use_auth_token=True) | |
content_B_LoRA = filter_lora(content_B_LoRA_sd, BLOCKS['content']) | |
content_B_LoRA = scale_lora(content_B_LoRA, content_alpha) | |
else: | |
content_B_LoRA = {} | |
# Get Style B-LoRA SD | |
if style_lora_model_id: | |
style_B_LoRA_sd, _ = pipe.lora_state_dict(style_lora_model_id, use_auth_token=True) | |
style_B_LoRA = filter_lora(style_B_LoRA_sd, BLOCKS['style']) | |
style_B_LoRA = scale_lora(style_B_LoRA, style_alpha) | |
else: | |
style_B_LoRA = {} | |
# Merge B-LoRAs SD | |
res_lora = {**content_B_LoRA, **style_B_LoRA} | |
# Load | |
pipe.load_lora_into_unet(res_lora, None, pipe.unet) | |
except Exception as e: | |
raise type(e)(f'failed to load_b_lora_to_unet, due to: {e}') | |
def load_b_loras(content_b_lora, style_b_lora): | |
if content_b_lora != "" and content_b_lora is not None: | |
# Get instance_prompt a.k.a trigger word | |
content_model_card = ModelCard.load(content_b_lora) | |
content_model_repo_data = content_model_card.data.to_dict() | |
content_model_instance_prompt = content_model_repo_data.get("instance_prompt") | |
else: | |
content_model_instance_prompt = '' | |
if style_b_lora != "" and style_b_lora is not None: | |
# Get instance_prompt a.k.a trigger word | |
style_model_card = ModelCard.load(style_b_lora) | |
style_model_repo_data = style_model_card.data.to_dict() | |
style_model_instance_prompt = style_model_repo_data.get("instance_prompt") | |
style_model_instance_prompt = f"in {style_model_instance_prompt} style" | |
else: | |
style_model_instance_prompt = '' | |
prepared_prompt = f"{content_model_instance_prompt} {style_model_instance_prompt}" | |
return prepared_prompt | |
def main(content_b_lora, style_b_lora, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if content_b_lora is None: | |
content_B_LoRA_path = '' | |
else: | |
content_B_LoRA_path = content_b_lora | |
if style_b_lora is None: | |
style_B_LoRA_path = '' | |
else: | |
style_B_LoRA_path = style_b_lora | |
content_alpha,style_alpha = 1,1.1 | |
load_b_lora_to_unet(pipeline, content_B_LoRA_path, style_B_LoRA_path, content_alpha, style_alpha) | |
prompt = prompt | |
image = pipeline( | |
prompt, | |
generator=generator, | |
num_images_per_prompt=1, | |
width = width, | |
height = height, | |
).images[0] | |
pipeline.unload_lora_weights() | |
return image | |
css=""" | |
#col-container { | |
margin: 0 auto; | |
max-width: 520px; | |
} | |
""" | |
if torch.cuda.is_available(): | |
power_device = "GPU" | |
else: | |
power_device = "CPU" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(f""" | |
# B-LoRas Inference | |
Currently running on {power_device}. | |
""") | |
with gr.Row(): | |
content_b_lora = gr.Dropdown( | |
label="B-LoRa for content", | |
allow_custom_value=True, | |
choices=SAMPLE_MODEL_IDS | |
) | |
style_b_lora = gr.Dropdown( | |
label="B-LoRa for style", | |
allow_custom_value=True, | |
choices=SAMPLE_MODEL_IDS | |
) | |
with gr.Column(): | |
load_b_loras_btn = gr.Button("load models") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=1, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0) | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=1, | |
placeholder="Enter a negative prompt", | |
visible=False, | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=1024, | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=50, | |
) | |
load_b_loras_btn.click( | |
fn = load_b_loras, | |
inputs = [content_b_lora, style_b_lora], | |
outputs = [prompt] | |
) | |
run_button.click( | |
fn = main, | |
inputs = [content_b_lora, style_b_lora, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs = [result] | |
) | |
demo.queue().launch() |