felix.wf
refine page
f25cf7a
from transformers import pipeline
import matplotlib.pyplot as plt
import streamlit as st
from PIL import Image
import pandas as pd
import numpy as np
import cv2
import tempfile
pipe_yolos = pipeline("object-detection", model="hustvl/yolos-tiny")
pipe_emotions = pipeline("image-classification", model="dima806/facial_emotions_image_detection")
pipe_emotions_refined = pipeline("image-classification", model="felixwf/fine_tuned_face_emotion_model")
st.title("Online Teaching Effect Monitor")
file_name = st.file_uploader("Upload an image or a video")
if file_name is not None:
if file_name.type.startswith('image'):
# Process image
face_image = Image.open(file_name)
st.image(face_image)
output = pipe_yolos(face_image)
data = output
# 过滤出所有标签为 "person" 的项
persons = [item for item in data if item['label'] == 'person']
# 打印结果
print(persons)
st.text(persons)
st.subheader(f"Number of persons detected: {len(persons)}")
# 假设有一张原始图片,加载图片并截取出每个 "person" 的部分
original_image = face_image
persons_image_list = []
# 截取每个 "person" 的部分并保存
for idx, person in enumerate(persons):
box = person['box']
cropped_image = original_image.crop((box['xmin'], box['ymin'], box['xmax'], box['ymax']))
cropped_image.save(f'person_{idx}.jpg')
cropped_image.show()
persons_image_list.append(cropped_image)
# Calculate the number of rows needed for 3 columns
num_images = len(persons)
num_cols = 8
num_rows = (num_images + num_cols - 1) // num_cols # Ceiling division
# Create a new canvas to stitch all person images in a grid with 3 columns
fig, axes = plt.subplots(num_rows, num_cols, figsize=(15, 2 * num_rows))
# Flatten the axes array for easy iteration
axes = axes.flatten()
# Crop each "person" part and plot it on the grid
for idx, person in enumerate(persons):
box = person['box']
cropped_image = original_image.crop((box['xmin'], box['ymin'], box['xmax'], box['ymax']))
axes[idx].imshow(cropped_image)
axes[idx].axis('off')
axes[idx].set_title(f'Person {idx}')
# Turn off any unused subplots
for ax in axes[num_images:]:
ax.axis('off')
# 识别每个人的表情
output_list_emotions = []
output_list_emotions_refined = []
for idx, face in enumerate(persons_image_list):
print(f"processing {idx}")
output = pipe_emotions(face)
output_list_emotions.append(output[0])
output = pipe_emotions_refined(face)
output_list_emotions_refined.append(output[0])
print(output_list_emotions)
st.subheader("Emotions by model: dima806/facial_emotions_image_detection")
st.text(output_list_emotions)
print(output_list_emotions_refined)
st.subheader("Actions by model: felixwf/fine_tuned_face_emotion_model")
st.text(output_list_emotions_refined)
# 统计各种标签的数量
label_counts_emotions = {}
label_counts_actions = {}
for item in output_list_emotions:
label = item['label']
if label in label_counts_emotions:
label_counts_emotions[label] += 1
else:
label_counts_emotions[label] = 1
for item in output_list_emotions_refined:
label = item['label']
if label in label_counts_actions:
label_counts_actions[label] += 1
else:
label_counts_actions[label] = 1
# 绘制饼状图
labels_emotions = list(label_counts_emotions.keys())
sizes_emotions = list(label_counts_emotions.values())
pie_fig_emotions, pie_ax_emotions = plt.subplots()
pie_ax_emotions.pie(sizes_emotions, labels=labels_emotions, autopct='%1.1f%%', startangle=140)
pie_ax_emotions.set_title('Distribution of Emotions')
pie_ax_emotions.axis('equal') # 确保饼状图为圆形
labels_actions = list(label_counts_actions.keys())
sizes_actions = list(label_counts_actions.values())
pie_fig_actions, pie_ax_actions = plt.subplots()
pie_ax_actions.pie(sizes_actions, labels=labels_actions, autopct='%1.1f%%', startangle=140)
pie_ax_actions.set_title('Distribution of Actions')
pie_ax_actions.axis('equal') # 确保饼状图为圆形
labels_refined = [item['label'] for item in output_list_emotions_refined]
label_counts_refined = {label: labels_refined.count(label) for label in set(labels_refined)}
bar_fig_actions, bar_ax_actions = plt.subplots()
bar_ax_actions.bar(label_counts_refined.keys(), label_counts_refined.values())
bar_ax_actions.set_title('Distribution of Actions')
bar_ax_actions.set_xlabel('Emotions')
bar_ax_actions.set_ylabel('Count')
labels_emotions = [item['label'] for item in output_list_emotions]
label_counts_emotions = {label: labels_emotions.count(label) for label in set(labels_emotions)}
bar_fig_emotions, bar_ax_emotions = plt.subplots()
bar_ax_emotions.bar(label_counts_emotions.keys(), label_counts_emotions.values())
bar_ax_emotions.set_title('Distribution of Emotions')
bar_ax_emotions.set_xlabel('Emotions')
bar_ax_emotions.set_ylabel('Count')
# plt.show()
# Use Streamlit columns to display the images and pie chart side by side
st.pyplot(fig) # Display the stitched person images
col1, col2 = st.columns(2)
col1.pyplot(pie_fig_emotions) # Display the pie chart
col2.pyplot(bar_fig_emotions) # Display the bar chart
col1.pyplot(pie_fig_actions) # Display the pie chart
col2.pyplot(bar_fig_actions) # Display the bar chart
elif file_name.type.startswith('video'):
# Save the uploaded video to a temporary file
with tempfile.NamedTemporaryFile(delete=False) as temp_video_file:
temp_video_file.write(file_name.read())
temp_video_path = temp_video_file.name
# Process video
video = cv2.VideoCapture(temp_video_path)
frame_count = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_interval = frame_rate # Process one frame per second
frame_emotions = []
frame_emotions_refined = []
for frame_idx in range(0, frame_count, frame_interval):
video.set(cv2.CAP_PROP_POS_FRAMES, frame_idx)
ret, frame = video.read()
if not ret:
break
# Convert frame to PIL Image
frame_image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
output = pipe_yolos(frame_image)
data = output
persons = [item for item in data if item['label'] == 'person']
persons_image_list = []
for person in persons:
box = person['box']
cropped_image = frame_image.crop((box['xmin'], box['ymin'], box['xmax'], box['ymax']))
persons_image_list.append(cropped_image)
# Recognize emotions for each person in the frame
frame_emotion = []
for face in persons_image_list:
output = pipe_emotions(face)
frame_emotion.append(output[0]['label'])
frame_emotions.append(frame_emotion)
frame_emotion_refined = []
for face in persons_image_list:
output = pipe_emotions_refined(face)
frame_emotion_refined.append(output[0]['label'])
frame_emotions_refined.append(frame_emotion_refined)
# Plot number of persons detected over frames
fig, ax = plt.subplots(figsize=(10, 5))
ax.plot(range(len(frame_emotions)), [len(emotions) for emotions in frame_emotions], label='Number of Persons Detected')
ax.set_xlabel('Frame')
ax.set_ylabel('Number of Persons')
ax.set_title('Number of Persons Detected Over Frames')
ax.legend()
st.pyplot(fig)
# Plot emotions over frames, using the same frame index
fig, ax = plt.subplots(figsize=(10, 5))
for emotion in frame_emotions_refined[0]:
ax.bar(range(len(frame_emotions_refined)), [emotion_counts[emotion] for emotion_counts in frame_emotions_refined], label=emotion)
ax.set_xlabel('Frame')
ax.set_ylabel('Emotion Count')
ax.set_title('Emotion Distribution Over Frames')
ax.legend()
st.pyplot(fig)
# Assuming frame_emotions_refined is a list of lists, where each sublist contains emotion labels for a frame
fig, ax = plt.subplots(figsize=(10, 5))
# Iterate over each frame's emotions
for frame_idx, emotions in enumerate(frame_emotions_refined):
# Count occurrences of each emotion in the current frame
emotion_counts = {emotion: emotions.count(emotion) for emotion in set(emotions)}
# Plot the emotion counts for the current frame
ax.clear()
ax.bar(emotion_counts.keys(), emotion_counts.values())
ax.set_title(f"Frame {frame_idx + 1}")
ax.set_xlabel('Emotions')
ax.set_ylabel('Count')
# Display the plot for the current frame
st.pyplot(fig)
else:
st.error("Unsupported file type. Please upload an image or a video.")