File size: 8,971 Bytes
2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 4deea63 2293f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
# stocks.py
from datetime import datetime, timedelta
import numpy as np
import json
from functools import lru_cache
# Importações dos novos módulos
from data.database import DatabaseManager
from data.api_client import NewsAPIClient
from analysis.technical import TechnicalAnalyzer
from analysis.fundamental import FundamentalAnalyzer
from analysis.sentiment import SentimentAnalyzer
from strategies.backtrader import BacktraderIntegration
# Database configuration
db_manager = DatabaseManager()
# Analyzers configuration
technical_analyzer = TechnicalAnalyzer()
fundamental_analyzer = FundamentalAnalyzer()
sentiment_analyzer = SentimentAnalyzer()
# Confidence calculator
class ConfidenceCalculator:
def __init__(self):
self.weights = {
'sentiment': 0.4,
'technical': 0.3,
'fundamental': 0.3
}
def calculate(self, sentiment, technical, fundamental):
sentiment_score = self._normalie_sentiment(sentiment)
technical_score = self._normalize_technical(technical)
fundamental_score = self._normalize_fundamental(fundamental)
weighted_score = (
sentiment_score * self.weights['sentiment'] +
technical_score * self.weights['technical'] +
fundamental_score * self.weights['fundamental']
)
return {
'total_confidence': weighted_score,
'components': {
'sentiment': sentiment_score,
'technical': technical_score,
'fundamental': fundamental_score
}
}
def _normalie_sentiment(self, sentiment):
"""
Normaliza o sentimento em um único score de confiança.
Parâmetros:
sentiment (dict): {'negative': float, 'neutral': float, 'positive': float}
Retorno:
float: score normalizado entre 0 e 1.
"""
# Definição dos pesos para cada categoria
weight_positive = 1.0 # Sentimento positivo contribui mais
weight_neutral = 0.5 # Neutro tem impacto médio
weight_negative = 0.0 # Negativo reduz a confiança
# Cálculo do score ponderado
sentiment_score = (
sentiment['positive'] * weight_positive +
sentiment['neutral'] * weight_neutral +
sentiment['negative'] * weight_negative
)
# Garantindo que o score fique entre 0 e 1
return max(0.0, min(1.0, sentiment_score))
def _normalize_technical(self, tech):
if tech is None:
return 0.5
rsi_score = 1 - abs(tech['rsi'] - 50) / 50
price_score = np.tanh(tech['price_vs_sma'] * 100)
return 0.6 * rsi_score + 0.4 * price_score
def _normalize_fundamental(self, fund):
if not fund:
return 0.5
pe_ratio = fund.get('pe_ratio', 0)
sector_pe = fund.get('sector_pe')
revenue_growth = fund.get('revenue_growth', 0)
if sector_pe is None:
pe_score = 0.5
else:
pe_score = 1 if pe_ratio < sector_pe else 0.5
growth_score = min(revenue_growth / 20, 1)
return 0.5 * pe_score + 0.5 * growth_score
# Analysis pipeline
class AnalysisPipeline:
def __init__(self, sentiment_threshold=0.6, confidence_threshold=0.7):
self.confidence_calc = ConfidenceCalculator()
self.sentiment_threshold = sentiment_threshold
self.confidence_threshold = confidence_threshold
def set_sentiment_threshold(self, sentiment_threshold):
self.sentiment_threshold = sentiment_threshold
def set_confidence_threshold(self, confidence_threshold):
self.confidence_threshold = confidence_threshold
def analyze_company(self, ticker, news_api_key=None, fetch_new=True):
try:
# fundamental analysis
fundamental = fundamental_analyzer.analyze(ticker)
shortName = fundamental['shortName'].split()[0]
if fetch_new:
db_manager.save_data(ticker, 'financials', fundamental)
# collecting last news
news = self._get_news(shortName, ticker, news_api_key, fetch_new)
# technical analysis
technical = technical_analyzer.analyze(ticker)
if not fundamental or not news or technical is None:
print(f"Insufficient data for: {ticker}")
return None
# Sentiment analysis
sentiment = sentiment_analyzer.analyze(news)
# Confidence calculation
confidence = self.confidence_calc.calculate(
sentiment,
technical,
self._prepare_fundamental(fundamental)
)
# Recommendation generation
recommendation = self.generate_recommendation(
sentiment, technical, fundamental, confidence
)
return {
'recommendation': recommendation,
'confidence': confidence,
'technical': technical,
'fundamental': fundamental,
'sentiment': sentiment
}
except Exception as e:
print(f"Error in analysis: {e}")
return None
def _get_news(self, shortName, ticker, api_key, fetch_new):
if fetch_new and api_key:
try:
news_client = NewsAPIClient(api_key)
articles = news_client.get_news(shortName)
# Flatten the list of articles
db_manager.save_data(ticker, 'news', articles)
return articles
except Exception as e:
print(f"Error fetching news: {e}")
return db_manager.get_historical_data(ticker)['news']
else:
return db_manager.get_historical_data(ticker)['news']
def _prepare_fundamental(self, fundamental):
return {
'pe_ratio': fundamental.get('trailingPE', 0),
'sector_pe': fundamental.get('sectorPE'),
'revenue_growth': fundamental.get('revenueGrowth', 0)
}
def generate_recommendation(self, sentiment, technical, fundamental, confidence):
pe_ratio = fundamental.get('trailingPE', 0)
sector_pe = fundamental.get('sectorPE')
if confidence['total_confidence'] < 0.4:
return 'NEUTRAL'
if sector_pe is not None and sector_pe > 0:
if pe_ratio < sector_pe * 0.7:
return 'BUY'
elif pe_ratio > sector_pe * 1.3:
return 'SELL'
if confidence['total_confidence'] > self.confidence_threshold and sentiment['positive'] > self.sentiment_threshold:
return 'BUY'
if technical and 'trend' in technical:
return 'HOLD' if technical['trend'] == 'bullish' else 'SELL'
return 'NEUTRAL'
# Main function
if __name__ == "__main__":
pipeline = AnalysisPipeline()
print("\n=== Stock Market Analysis ===")
ticker = input("Enter the company ticker (e.g., AAPL): ").strip().upper()
fetch_new = input("Fetch new data from the internet? (y/n): ").lower()
fetch_new_bool = fetch_new in ['y', 'yes']
initial_investment = float(input("Initial Investment (USD): "))
years_back = int(input("Historical Period (years): "))
commission = float(input("Commission per trade: "))
news_api_key = 'YOUR_NEWSAPI_KEY_HERE'
print(f"\nRunning analysis for {ticker}...")
result = pipeline.analyze_company(
ticker=ticker,
news_api_key=news_api_key if news_api_key else None,
fetch_new=fetch_new_bool
)
if result:
end_date = datetime.now()
start_date = end_date - timedelta(days=years_back * 365)
bt_integration = BacktraderIntegration(result)
bt_integration.add_data_feed(ticker, start_date, end_date)
final_value = bt_integration.run_simulation(initial_investment, commission)
print("\n=== Analysis Result ===")
print(f"Recommendation: {result['recommendation']}")
print(f"Confidence: {result['confidence']['total_confidence']:.2%}")
print(f"Simulation Return: {(final_value / initial_investment - 1) * 100:.2f}%")
print("\nDetails:")
print(f"1. Sentiment: {json.dumps(result['sentiment'], indent=2)}")
print(f"2. Technical Analysis: RSI {result['technical']['rsi']:.1f}, Price vs SMA50: {result['technical']['price_vs_sma']:.2%}")
print(f"3. Fundamental: P/E {result['fundamental'].get('trailingPE', 'N/A')} vs Sector {result['fundamental'].get('sectorPE', 'N/A')}")
print(f"4. Confidence Components: {json.dumps(result['confidence']['components'], indent=2)}")
else:
print("\nUnable to complete analysis. Please check:")
print("- Internet connection")
print("- Ticker symbol")
print("- Availability of historical data") |