# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os import sys from typing import Any, List, Optional, Union import numpy as np import torch import torch.nn.functional as F from fairseq.data import data_utils from fairseq.data.fairseq_dataset import FairseqDataset logger = logging.getLogger(__name__) def add_data_specific_args(parent_args): parser = parent_args.add_argument_group('Hubert Dataset') parser.add_argument('--data', type=str) parser.add_argument('--sample_rate', type=float, default=16000) parser.add_argument('--label_dir', type=str) parser.add_argument('--labels', type=str, nargs='+') parser.add_argument('--label_rate', type=float) parser.add_argument('--max_keep_size', type=int, default=None) parser.add_argument('--min_sample_size', type=int) parser.add_argument('--max_sample_size', type=int) parser.add_argument('--pad_audio', type=bool) parser.add_argument('--normalize', type=bool) parser.add_argument('--random_crop', type=bool) parser.add_argument('--single_target', type=bool, default=False) return parent_args def load_audio(manifest_path, max_keep, min_keep): n_long, n_short = 0, 0 names, inds, sizes = [], [], [] with open(manifest_path) as f: root = f.readline().strip() for ind, line in enumerate(f): items = line.strip().split("\t") assert len(items) == 2, line sz = int(items[1]) if min_keep is not None and sz < min_keep: n_short += 1 elif max_keep is not None and sz > max_keep: n_long += 1 else: names.append(items[0]) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(names)}, skipped {n_short} short and {n_long} long, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, names, inds, tot, sizes def load_label(label_path, inds, tot): with open(label_path) as f: labels = [line.rstrip() for line in f] assert ( len(labels) == tot ), f"number of labels does not match ({len(labels)} != {tot})" labels = [labels[i] for i in inds] return labels def load_label_offset(label_path, inds, tot): with open(label_path) as f: code_lengths = [len(line.encode("utf-8")) for line in f] assert ( len(code_lengths) == tot ), f"number of labels does not match ({len(code_lengths)} != {tot})" offsets = list(itertools.accumulate([0] + code_lengths)) offsets = [(offsets[i], offsets[i + 1]) for i in inds] return offsets def verify_label_lengths( audio_sizes, audio_rate, label_path, label_rate, inds, tot, tol=0.1, # tolerance in seconds ): if label_rate < 0: logger.info(f"{label_path} is sequence label. skipped") return with open(label_path) as f: lengths = [len(line.rstrip().split()) for line in f] assert len(lengths) == tot lengths = [lengths[i] for i in inds] num_invalid = 0 for i, ind in enumerate(inds): dur_from_audio = audio_sizes[i] / audio_rate dur_from_label = lengths[i] / label_rate if abs(dur_from_audio - dur_from_label) > tol: logger.warning( ( f"audio and label duration differ too much " f"(|{dur_from_audio} - {dur_from_label}| > {tol}) " f"in line {ind+1} of {label_path}. Check if `label_rate` " f"is correctly set (currently {label_rate}). " f"num. of samples = {audio_sizes[i]}; " f"label length = {lengths[i]}" ) ) num_invalid += 1 if num_invalid > 0: logger.warning( f"total {num_invalid} (audio, label) pairs with mismatched lengths" ) class HubertDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, label_paths: List[str], label_rates: Union[List[float], float], # -1 for sequence labels pad_list: List[str], eos_list: List[str], label_processors: Optional[List[Any]] = None, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, max_sample_size: Optional[int] = None, shuffle: bool = True, pad_audio: bool = False, normalize: bool = False, store_labels: bool = True, random_crop: bool = False, single_target: bool = False, ): self.audio_root, self.audio_names, inds, tot, self.sizes = load_audio( manifest_path, max_keep_sample_size, min_keep_sample_size ) self.sample_rate = sample_rate self.shuffle = shuffle self.random_crop = random_crop self.num_labels = len(label_paths) self.pad_list = pad_list self.eos_list = eos_list self.label_processors = label_processors self.single_target = single_target self.label_rates = ( [label_rates for _ in range(len(label_paths))] if isinstance(label_rates, float) else label_rates ) self.store_labels = store_labels if store_labels: self.label_list = [load_label(p, inds, tot) for p in label_paths] else: self.label_paths = label_paths self.label_offsets_list = [ load_label_offset(p, inds, tot) for p in label_paths ] assert label_processors is None or len(label_processors) == self.num_labels for label_path, label_rate in zip(label_paths, self.label_rates): verify_label_lengths( self.sizes, sample_rate, label_path, label_rate, inds, tot ) self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) self.pad_audio = pad_audio self.normalize = normalize logger.info( f"pad_audio={pad_audio}, random_crop={random_crop}, " f"normalize={normalize}, max_sample_size={self.max_sample_size}" ) def get_audio(self, index): import soundfile as sf wav_path = os.path.join(self.audio_root, self.audio_names[index]) wav, cur_sample_rate = sf.read(wav_path) wav = torch.from_numpy(wav).float() wav = self.postprocess(wav, cur_sample_rate) return wav def get_label(self, index, label_idx): if self.store_labels: label = self.label_list[label_idx][index] else: with open(self.label_paths[label_idx]) as f: offset_s, offset_e = self.label_offsets_list[label_idx][index] f.seek(offset_s) label = f.read(offset_e - offset_s) if self.label_processors is not None: label = self.label_processors[label_idx](label) return label def get_labels(self, index): return [self.get_label(index, i) for i in range(self.num_labels)] def __getitem__(self, index): wav = self.get_audio(index) labels = self.get_labels(index) return {"id": index, "source": wav, "label_list": labels} def __len__(self): return len(self.sizes) def crop_to_max_size(self, wav, target_size): size = len(wav) diff = size - target_size if diff <= 0: return wav, 0 start, end = 0, target_size if self.random_crop: start = np.random.randint(0, diff + 1) end = size - diff + start return wav[start:end], start def collater(self, samples): # target = max(sizes) -> random_crop not used # target = max_sample_size -> random_crop used for long samples = [s for s in samples if s["source"] is not None] if len(samples) == 0: return {} audios = [s["source"] for s in samples] audio_sizes = [len(s) for s in audios] if self.pad_audio: audio_size = min(max(audio_sizes), self.max_sample_size) else: audio_size = min(min(audio_sizes), self.max_sample_size) collated_audios, padding_mask, audio_starts = self.collater_audio( audios, audio_size ) targets_by_label = [ [s["label_list"][i] for s in samples] for i in range(self.num_labels) ] targets_list, lengths_list, ntokens_list = self.collater_label( targets_by_label, audio_size, audio_starts ) net_input = {"source": collated_audios, "padding_mask": padding_mask} batch = { "id": torch.LongTensor([s["id"] for s in samples]), "net_input": net_input, } if self.single_target: batch["target_lengths"] = lengths_list[0] batch["ntokens"] = ntokens_list[0] batch["target"] = targets_list[0] else: batch["target_lengths_list"] = lengths_list batch["ntokens_list"] = ntokens_list batch["target_list"] = targets_list return batch def collater_audio(self, audios, audio_size): collated_audios = audios[0].new_zeros(len(audios), audio_size) padding_mask = ( torch.BoolTensor(collated_audios.shape).fill_(False) # if self.pad_audio else None ) audio_starts = [0 for _ in audios] for i, audio in enumerate(audios): diff = len(audio) - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: assert self.pad_audio collated_audios[i] = torch.cat([audio, audio.new_full((-diff,), 0.0)]) padding_mask[i, diff:] = True else: collated_audios[i], audio_starts[i] = self.crop_to_max_size( audio, audio_size ) return collated_audios, padding_mask, audio_starts def collater_frm_label(self, targets, audio_size, audio_starts, label_rate, pad): assert label_rate > 0 s2f = label_rate / self.sample_rate frm_starts = [int(round(s * s2f)) for s in audio_starts] frm_size = int(round(audio_size * s2f)) if not self.pad_audio: rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] frm_size = min(frm_size, *rem_size) targets = [t[s: s + frm_size] for t, s in zip(targets, frm_starts)] logger.debug(f"audio_starts={audio_starts}") logger.debug(f"frame_starts={frm_starts}") logger.debug(f"frame_size={frm_size}") lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths, ntokens def collater_seq_label(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens(targets, pad_idx=pad, left_pad=False) return targets, lengths, ntokens def collater_label(self, targets_by_label, audio_size, audio_starts): targets_list, lengths_list, ntokens_list = [], [], [] itr = zip(targets_by_label, self.label_rates, self.pad_list) for targets, label_rate, pad in itr: if label_rate == -1.0: targets, lengths, ntokens = self.collater_seq_label(targets, pad) else: targets, lengths, ntokens = self.collater_frm_label( targets, audio_size, audio_starts, label_rate, pad ) targets_list.append(targets) lengths_list.append(lengths) ntokens_list.append(ntokens) return targets_list, lengths_list, ntokens_list def num_tokens(self, index): return self.size(index) def size(self, index): if self.pad_audio: return self.sizes[index] return min(self.sizes[index], self.max_sample_size) def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order)[::-1] def postprocess(self, wav, cur_sample_rate): if wav.dim() == 2: wav = wav.mean(-1) assert wav.dim() == 1, wav.dim() if cur_sample_rate != self.sample_rate: raise Exception(f"sr {cur_sample_rate} != {self.sample_rate}") if self.normalize: with torch.no_grad(): wav = F.layer_norm(wav, wav.shape) return wav