File size: 4,970 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# coding=utf-8
from collections import Counter
import torch
from torch import nn
# import seqeval

from .utils_ner import get_entities


class metrics_mlm_acc(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, logits, labels, masked_lm_metric):

        # if len(list(logits.shape))==3:
        mask_label_size = 0
        for i in masked_lm_metric:
            for j in i:
                if j > 0:
                    mask_label_size += 1

        y_pred = torch.argmax(logits, dim=-1)

        y_pred = y_pred.view(size=(-1,))
        y_true = labels.view(size=(-1,))
        masked_lm_metric = masked_lm_metric.view(size=(-1,))

        corr = torch.eq(y_pred, y_true)
        corr = torch.multiply(masked_lm_metric, corr)

        acc = torch.sum(corr.float())/mask_label_size
        return acc


class EntityScore(object):
    def __init__(self):
        self.reset()

    def reset(self):
        self.origins = []
        self.founds = []
        self.rights = []

    def compute(self, origin, found, right):
        recall = 0 if origin == 0 else (right / origin)
        precision = 0 if found == 0 else (right / found)
        f1 = 0. if recall + precision == 0 else (2 * precision * recall) / (precision + recall)
        return recall, precision, f1

    def result(self):
        class_info = {}
        
        origin_counter = Counter([x[0] for x in self.origins])
        found_counter = Counter([x[0] for x in self.founds])
        right_counter = Counter([x[0] for x in self.rights])
        for type_, count in origin_counter.items():
            origin = count
            found = found_counter.get(type_, 0)
            right = right_counter.get(type_, 0)
            recall, precision, f1 = self.compute(origin, found, right)
            class_info[type_] = {"acc": round(precision, 4), 'recall': round(recall, 4), 'f1': round(f1, 4)}
        origin = len(self.origins)
        found = len(self.founds)
        right = len(self.rights)
        recall, precision, f1 = self.compute(origin, found, right)
        return {'acc': precision, 'recall': recall, 'f1': f1}, class_info

    def update(self, true_subject, pred_subject):
        self.origins.extend(true_subject)
        self.founds.extend(pred_subject)
        self.rights.extend([pre_entity for pre_entity in pred_subject if pre_entity in true_subject])

class SeqEntityScore(object):
    def __init__(self, id2label, markup='bios', middle_prefix='I-'):
        self.id2label = id2label
        self.markup = markup
        self.middle_prefix = middle_prefix
        self.reset()

    def reset(self):
        self.origins = []
        self.founds = []
        self.rights = []

    def compute(self, origin, found, right):
        recall = 0 if origin == 0 else (right / origin)
        precision = 0 if found == 0 else (right / found)
        f1 = 0. if recall + precision == 0 else (2 * precision * recall) / (precision + recall)
        return recall, precision, f1

    def result(self):
        class_info = {}
        origin_counter = Counter([x[0] for x in self.origins])
        found_counter = Counter([x[0] for x in self.founds])
        right_counter = Counter([x[0] for x in self.rights])
        for type_, count in origin_counter.items():
            origin = count
            found = found_counter.get(type_, 0)
            right = right_counter.get(type_, 0)
            # print('origin:', origin, ' found:', found, ' right:', right)
            recall, precision, f1 = self.compute(origin, found, right)
            class_info[type_] = {"acc": round(precision, 4), 'recall': round(recall, 4), 'f1': round(f1, 4)}
        origin = len(self.origins)
        found = len(self.founds)
        right = len(self.rights)
        recall, precision, f1 = self.compute(origin, found, right)
        return {'acc': precision, 'recall': recall, 'f1': f1}, class_info

    def update(self, label_paths, pred_paths):
        '''
        labels_paths: [[],[],[],....]
        pred_paths: [[],[],[],.....]

        :param label_paths:
        :param pred_paths:
        :return:
        Example:
            >>> labels_paths = [['O', 'O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
            >>> pred_paths = [['O', 'O', 'B-MISC', 'I-MISC', 'I-MISC', 'I-MISC', 'O'], ['B-PER', 'I-PER', 'O']]
        '''
        for label_path, pre_path in zip(label_paths, pred_paths):
            label_entities = get_entities(label_path, self.id2label, self.markup, self.middle_prefix)
            pre_entities = get_entities(pre_path, self.id2label, self.markup, self.middle_prefix)
            # print('label:', label_path, ',label_entities: ', label_entities)
            # print('pred:', pre_path, ',pre_entities: ', pre_entities)
            self.origins.extend(label_entities)
            self.founds.extend(pre_entities)
            self.rights.extend([pre_entity for pre_entity in pre_entities if pre_entity in label_entities])