Spaces:
Sleeping
Sleeping
from transformers import AutoProcessor, AutoModelForCausalLM, AutoConfig | |
import gradio as gr | |
import torch | |
# # Load the processor and model | |
processor = AutoProcessor.from_pretrained("microsoft/git-base") | |
# config = AutoConfig.from_pretrained("./adapter_config.json") | |
# # model = AutoModelForCausalLM.from_pretrained("microsoft/git-base") | |
# model_path = "./adapter_model.safetensors" | |
# model = AutoModelForCausalLM.from_pretrained(model_path) | |
from transformers import AutoModelForCausalLM | |
from peft import PeftModel | |
#Base model on your local filesystem | |
base_model_dir = "microsoft/git-base" | |
base_model = AutoModelForCausalLM.from_pretrained(base_model_dir) | |
#Adaptor directory on your local filesystem | |
adaptor_dir = "./" | |
merged_model = PeftModel.from_pretrained(base_model,adaptor_dir) | |
merged_model = merged_model.merge_and_unload() | |
merged_model.save_pretrained("./Merged-Model/") | |
model = merged_model | |
def predict(image): | |
try: | |
# Prepare the image using the processor | |
inputs = processor(images=image, return_tensors="pt") | |
# Move inputs to the appropriate device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
inputs = {key: value.to(device) for key, value in inputs.items()} | |
model.to(device) | |
# Generate the caption | |
outputs = model.generate(**inputs) | |
# Decode the generated caption | |
caption = processor.batch_decode(outputs, skip_special_tokens=True)[0] | |
return caption | |
except Exception as e: | |
print("Error during prediction:", str(e)) | |
return "Error: " + str(e) | |
# https://www.gradio.app/guides | |
with gr.Blocks() as demo: | |
image = gr.Image(type="pil") | |
predict_btn = gr.Button("Predict", variant="primary") | |
output = gr.Label(label="Generated Caption") | |
inputs = [image] | |
outputs = [output] | |
predict_btn.click(predict, inputs=inputs, outputs=outputs) | |
if __name__ == "__main__": | |
demo.launch() # Local machine only | |
# demo.launch(server_name="0.0.0.0") # LAN access to local machine | |
# demo.launch(share=True) # Public access to local machine | |