Ranking-Tracker / app.py
fantos's picture
Update app.py
836a04b verified
import gradio as gr
import pandas as pd
import plotly.express as px
from datetime import datetime, timedelta
import requests
from io import BytesIO
def create_trend_chart(space_id, daily_ranks_df):
"""๋ผ์ธ ์ฐจํŠธ ์ƒ์„ฑ ํ•จ์ˆ˜"""
if space_id is None or daily_ranks_df.empty:
return None
try:
space_data = daily_ranks_df[daily_ranks_df['id'] == space_id].copy()
if space_data.empty:
return None
space_data = space_data.sort_values('date')
fig = px.line(
space_data,
x='date',
y='rank',
title=f'Daily Rank Trend for {space_id}',
labels={'date': 'Date', 'rank': 'Rank'},
markers=True,
height=500
)
fig.update_layout(
xaxis_title="Date",
yaxis_title="Rank",
yaxis=dict(
range=[100, 1],
tickmode='linear',
tick0=1,
dtick=10
),
hovermode='x unified',
plot_bgcolor='white',
paper_bgcolor='white',
showlegend=False,
margin=dict(t=50, r=20, b=40, l=40)
)
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_traces(
line_color='#2563eb',
line_width=2,
marker=dict(size=8, color='#2563eb')
)
return fig
except Exception as e:
print(f"Error creating chart: {e}")
return None
def get_duplicate_spaces(top_100_spaces):
"""
๋™์ผ username(๋˜๋Š” organization) ์•„๋ž˜ ์—ฌ๋Ÿฌ ์ŠคํŽ˜์ด์Šค๊ฐ€ ์˜ฌ๋ผ์˜จ ๊ฒฝ์šฐ
๊ฐ๊ฐ์˜ trendingScore๋ฅผ ํ•ฉ์‚ฐํ•œ ๋’ค ์ƒ์œ„ 20๋ช…์„ ๋ฝ‘๋Š” ํ•จ์ˆ˜
"""
# username/spacename -> username๋งŒ ์ถ”์ถœ
top_100_spaces['clean_id'] = top_100_spaces['id'].apply(lambda x: x.split('/')[0])
# clean_id๋ณ„ ํŠธ๋ Œ๋”ฉ ์Šค์ฝ”์–ด ํ•ฉ์‚ฐ
score_sums = top_100_spaces.groupby('clean_id')['trendingScore'].sum()
# ๋””๋ฒ„๊น…์šฉ ์ถœ๋ ฅ
print("\n=== ID๋ณ„ ์Šค์ฝ”์–ด ํ•ฉ์‚ฐ ๊ฒฐ๊ณผ (์ƒ์œ„ 20) ===")
for cid, score in score_sums.sort_values(ascending=False).head(20).items():
print(f"Clean ID: {cid}, Total Score: {score}")
# ์ƒ์œ„ 20๊ฐœ ์ถ”์ถœ
top_20_scores = score_sums.sort_values(ascending=False).head(20)
return top_20_scores
def create_duplicates_chart(score_sums):
"""์ค‘๋ณต(๋˜๋Š” ์—ฌ๋Ÿฌ Spaces ์šด์˜) ์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ํ•ฉ์‚ฐ ์ฐจํŠธ ์ƒ์„ฑ"""
if score_sums.empty:
return None
# ์‹œ๊ฐํ™”๋ฅผ ์œ„ํ•œ DataFrame ์ƒ์„ฑ
df = pd.DataFrame({
'id': score_sums.index,
'total_score': score_sums.values,
'rank': range(1, len(score_sums) + 1)
})
# ๋””๋ฒ„๊น…์šฉ ์ถœ๋ ฅ
print("\n=== ์ฐจํŠธ ๋ฐ์ดํ„ฐ (clean_id ๋‹จ์œ„) ===")
print(df)
fig = px.bar(
df,
x='id',
y='rank',
title="Top 20 Spaces by Combined Trending Score",
height=500,
text='total_score'
)
fig.update_layout(
showlegend=False,
margin=dict(t=50, r=20, b=40, l=40),
plot_bgcolor='white',
paper_bgcolor='white',
xaxis_tickangle=-45,
yaxis=dict(
range=[len(df) + 0.5, 0.5],
tickmode='linear',
tick0=1,
dtick=1
)
)
fig.update_traces(
marker_color='#4CAF50',
texttemplate='%{text:.1f}',
textposition='outside',
hovertemplate='ID: %{x}<br>Rank: %{y}<br>Total Score: %{text:.1f}<extra></extra>'
)
fig.update_xaxes(
title_text="User ID",
showgrid=True,
gridwidth=1,
gridcolor='lightgray'
)
fig.update_yaxes(
title_text="Rank",
showgrid=True,
gridwidth=1,
gridcolor='lightgray'
)
return fig
def update_display(selection):
"""์‚ฌ์šฉ์ž๊ฐ€ Space๋ฅผ ์„ ํƒํ–ˆ์„ ๋•Œ, ์ƒ์„ธ ์ •๋ณด์™€ ํŠธ๋ Œ๋“œ ์ฐจํŠธ๋ฅผ ์—…๋ฐ์ดํŠธ"""
global daily_ranks_df
if not selection:
return None, gr.HTML(value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>")
try:
space_id = selection
latest_data = daily_ranks_df[daily_ranks_df['id'] == space_id].sort_values('date').iloc[-1]
info_text = f"""
<div style="padding: 16px; background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);">
<h3 style="margin: 0 0 12px 0;">Space Details</h3>
<p style="margin: 4px 0;"><strong>ID:</strong> {space_id}</p>
<p style="margin: 4px 0;"><strong>Current Rank:</strong> {int(latest_data['rank'])}</p>
<p style="margin: 4px 0;"><strong>Trending Score:</strong> {latest_data['trendingScore']:.2f}</p>
<p style="margin: 4px 0;"><strong>Created At:</strong> {latest_data['createdAt'].strftime('%Y-%m-%d')}</p>
<p style="margin: 12px 0 0 0;">
<a href="https://huggingface.co./spaces/{space_id}"
target="_blank"
style="color: #2563eb; text-decoration: none;">
View Space โ†—
</a>
</p>
</div>
"""
chart = create_trend_chart(space_id, daily_ranks_df)
return chart, gr.HTML(value=info_text)
except Exception as e:
print(f"Error in update_display: {e}")
return None, gr.HTML(value=f"<div style='color: red;'>Error processing data: {str(e)}</div>")
def load_and_process_data():
"""
- Parquet ํŒŒ์ผ ๋กœ๋“œ ํ›„ 30์ผ ์ด๋‚ด ๋ฐ์ดํ„ฐ๋งŒ ํ•„ํ„ฐ๋ง
- (์„ ํƒ) createdAt + id ๊ธฐ์ค€ ์ค‘๋ณต ์ œ๊ฑฐ
- ๋‚ ์งœ๋ณ„ ranking ์‚ฐ์ • -> daily_ranks_df ๊ตฌ์„ฑ
- ์ตœ์‹  ๋‚ ์งœ ๊ธฐ์ค€ top 100 ์ถ”์ถœ ํ›„ id ์ค‘๋ณต ์ œ๊ฑฐ
"""
try:
url = "https://huggingface.co./datasets/cfahlgren1/hub-stats/resolve/main/spaces.parquet"
response = requests.get(url)
df = pd.read_parquet(BytesIO(response.content))
# 30์ผ ์ „ ์‹œ์  ๊ณ„์‚ฐ
thirty_days_ago = datetime.now() - timedelta(days=30)
df['createdAt'] = pd.to_datetime(df['createdAt'])
# 30์ผ ๋‚ด์— ์ƒ์„ฑ๋œ ๊ธฐ๋ก๋งŒ ํ•„ํ„ฐ๋ง
df = df[df['createdAt'] >= thirty_days_ago].copy()
# (์„ ํƒ) createdAt & id ๊ธฐ์ค€ ์ค‘๋ณต ์ œ๊ฑฐ
df = (
df
.sort_values(['createdAt', 'trendingScore'], ascending=[True, False])
.drop_duplicates(subset=['createdAt', 'id'], keep='first')
.reset_index(drop=True)
)
# ๋‚ ์งœ ๋ฒ”์œ„ ์ƒ์„ฑ
dates = pd.date_range(start=thirty_days_ago, end=datetime.now(), freq='D')
daily_ranks = []
# ๋‚ ์งœ๋ณ„๋กœ rank ๊ณ„์‚ฐ
for date in dates:
date_data = df[df['createdAt'].dt.date <= date.date()].copy()
date_data = date_data.sort_values(['trendingScore', 'id'], ascending=[False, True])
date_data['rank'] = range(1, len(date_data) + 1)
date_data['date'] = date.date()
daily_ranks.append(date_data[['id', 'date', 'rank', 'trendingScore', 'createdAt']])
# ์ผ์ž๋ณ„ ๋žญํ‚น ๋ฐ์ดํ„ฐ๋ฅผ ํ•ฉ์นจ
daily_ranks_df = pd.concat(daily_ranks, ignore_index=True)
# ์ตœ์‹  ๋‚ ์งœ ๊ธฐ์ค€ Top 100 ์ถ”์ถœ
latest_date = daily_ranks_df['date'].max()
top_100_spaces = daily_ranks_df[
(daily_ranks_df['date'] == latest_date) &
(daily_ranks_df['rank'] <= 100)
].sort_values('rank').copy()
# id ๊ธฐ์ค€ ์ค‘๋ณต ์ œ๊ฑฐ
top_100_spaces = top_100_spaces.drop_duplicates(subset=['id'], keep='first').reset_index(drop=True)
return daily_ranks_df, top_100_spaces
except Exception as e:
print(f"Error loading data: {e}")
return pd.DataFrame(), pd.DataFrame()
# ๋ฉ”์ธ ์‹คํ–‰
print("Loading initial data...")
daily_ranks_df, top_100_spaces = load_and_process_data()
print("Data loaded successfully!")
# ์ค‘๋ณต(์—ฌ๋Ÿฌ Space) ์šด์˜ ์‚ฌ์šฉ์ž์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ ๊ณ„์‚ฐ
duplicates = get_duplicate_spaces(top_100_spaces)
duplicates_chart = create_duplicates_chart(duplicates)
# Gradio ์•ฑ ์ƒ์„ฑ
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# HF Space Ranking Tracker (~30 Days)
Track, analyze, and discover trending AI applications in the Hugging Face ecosystem.
Our service continuously monitors and ranks all Spaces over a 30-day period,
providing detailed analytics and daily ranking changes for the top 100 performers.
""")
with gr.Tabs():
with gr.Tab("Dashboard"):
with gr.Row(variant="panel"):
with gr.Column(scale=5):
trend_plot = gr.Plot(
label="Daily Rank Trend",
container=True
)
with gr.Column(scale=5):
duplicates_plot = gr.Plot(
label="Multiple Entries Analysis",
value=duplicates_chart,
container=True
)
with gr.Row():
info_box = gr.HTML(
value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>"
)
# Radio ๋ฒ„ํŠผ์€ ์ˆจ๊น€. ์•„๋ž˜ ์นด๋“œ ํด๋ฆญ์œผ๋กœ ์„ ํƒํ•˜๋„๋ก ์œ ๋„
space_selection = gr.Radio(
choices=[row['id'] for _, row in top_100_spaces.iterrows()],
value=None,
visible=False
)
# Top 100 ์ŠคํŽ˜์ด์Šค๋ฅผ ์นด๋“œ ํ˜•ํƒœ๋กœ ํ‘œ์‹œ
html_content = """
<div style='display: flex; flex-wrap: wrap; gap: 16px; justify-content: center;'>
""" + "".join([
f"""
<div class="space-card"
data-space-id="{row['id']}"
style="
border: 1px solid #e5e7eb;
border-radius: 8px;
padding: 16px;
margin: 8px;
background-color: hsl(210, {max(30, 90 - (row['rank'] / 100 * 60))}%, {min(97, 85 + (row['rank'] / 100 * 10))}%);
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
display: inline-block;
width: 250px;
vertical-align: top;
cursor: pointer;
transition: all 0.2s;
"
onmouseover="this.style.transform='translateY(-2px)';this.style.boxShadow='0 4px 6px rgba(0,0,0,0.1)';"
onmouseout="this.style.transform='none';this.style.boxShadow='0 1px 3px rgba(0,0,0,0.1)';"
>
<div style="font-size: 1.2em; font-weight: bold; margin-bottom: 8px;">
#{int(row['rank'])}
</div>
<div style="margin-bottom: 8px;">
{row['id']}
</div>
<div style="color: #666; margin-bottom: 12px;">
Score: {row['trendingScore']:.2f}
</div>
<div style="display: flex; gap: 8px;">
<a href="https://huggingface.co./spaces/{row['id']}"
target="_blank"
style="padding: 6px 12px; background-color: white; color: #2563eb; text-decoration: none; border-radius: 4px; font-size: 0.9em; border: 1px solid #2563eb;"
onclick="event.stopPropagation();">
View Space โ†—
</a>
<button onclick="event.preventDefault(); gradioEvent('{row['id']}');"
style="padding: 6px 12px; background-color: #2563eb; color: white; border: none; border-radius: 4px; cursor: pointer; font-size: 0.9em;">
View Trend
</button>
</div>
</div>
"""
for _, row in top_100_spaces.iterrows()
]) + """
</div>
<script>
function gradioEvent(spaceId) {
// Space ์นด๋“œ ๋‚ด "View Trend" ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ, ๋Œ€์‘๋˜๋Š” Radio ํ•ญ๋ชฉ ์„ ํƒ ์ด๋ฒคํŠธ ๋ฐœ์ƒ
const radio = document.querySelector(`input[type="radio"][value="${spaceId}"]`);
if (radio) {
radio.checked = true;
const event = new Event('change');
radio.dispatchEvent(event);
}
}
</script>
"""
with gr.Row():
space_grid = gr.HTML(value=html_content)
with gr.Tab("About"):
gr.Markdown("""
### Our Tracking System
**What We Track**
- Daily ranking changes for all Hugging Face Spaces
- Comprehensive trending scores based on 30-day activity
- Detailed performance metrics for top 100 Spaces
- Historical ranking data with daily granularity
**Key Features**
- **Real-time Rankings**: Stay updated with daily rank changes
- **Interactive Visualizations**: Track ranking trajectories over time
- **Trend Analysis**: Identify emerging popular AI applications
- **Direct Access**: Quick links to explore trending Spaces
- **Performance Metrics**: Detailed trending scores and statistics
### Why Use HF Space Ranking Tracker?
- Discover trending AI demos and applications
- Monitor your Space's performance and popularity
- Identify emerging trends in the AI community
- Make data-driven decisions about your AI projects
- Stay ahead of the curve in AI application development
Our dashboard provides a comprehensive view of the Hugging Face Spaces ecosystem,
helping developers, researchers, and enthusiasts track and understand the dynamics of popular AI applications.
Whether you're monitoring your own Space's performance or discovering new trending applications,
HF Space Ranking Tracker offers the insights you need.
""")
# ์‚ฌ์šฉ์ž ์„ ํƒ์‹œ(=Radio.value ๋ณ€๊ฒฝ ์‹œ) update_display ํ˜ธ์ถœ
space_selection.change(
fn=update_display,
inputs=[space_selection],
outputs=[trend_plot, info_box],
api_name="update_display"
)
if __name__ == "__main__":
demo.launch(share=True)