Spaces:
Running
Running
File size: 13,587 Bytes
360fc46 b6775e1 8b6deaa 360fc46 b6775e1 360fc46 b6775e1 360fc46 6ffa842 8b6deaa 6ffa842 8b6deaa 6ffa842 8b6deaa 6ffa842 8b6deaa 6ffa842 8b6deaa 6ffa842 8b6deaa 6ffa842 b6775e1 360fc46 b6775e1 360fc46 b6775e1 360fc46 6ffa842 360fc46 b6775e1 8b6deaa 360fc46 b6775e1 8b6deaa 6ffa842 8b6deaa 6ffa842 360fc46 b6775e1 360fc46 b6775e1 360fc46 b6775e1 360fc46 b6775e1 360fc46 b6775e1 360fc46 b6775e1 360fc46 8b6deaa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import gradio as gr
import pandas as pd
import plotly.express as px
from datetime import datetime, timedelta
import requests
from io import BytesIO
def create_trend_chart(space_id, daily_ranks_df):
if space_id is None or daily_ranks_df.empty:
return None
try:
space_data = daily_ranks_df[daily_ranks_df['id'] == space_id].copy()
if space_data.empty:
return None
space_data = space_data.sort_values('date')
fig = px.line(
space_data,
x='date',
y='rank',
title=f'Daily Rank Trend for {space_id}',
labels={'date': 'Date', 'rank': 'Rank'},
markers=True,
height=500 # ์์ ๋ ๋ถ๋ถ
)
fig.update_layout(
xaxis_title="Date",
yaxis_title="Rank",
yaxis=dict(
range=[100, 1],
tickmode='linear',
tick0=1,
dtick=10
),
hovermode='x unified',
plot_bgcolor='white',
paper_bgcolor='white',
showlegend=False,
margin=dict(t=50, r=20, b=40, l=40)
)
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_traces(
line_color='#2563eb',
line_width=2,
marker=dict(size=8, color='#2563eb')
)
return fig
except Exception as e:
print(f"Error creating chart: {e}")
return None
def get_duplicate_spaces(top_100_spaces):
# ID์์ username/spacename ํ์์์ username๋ง ์ถ์ถ
top_100_spaces['clean_id'] = top_100_spaces['id'].apply(lambda x: x.split('/')[0])
# username๋ณ trending score ํฉ์ฐ
score_sums = top_100_spaces.groupby('clean_id')['trendingScore'].sum()
# ๋๋ฒ๊น
์ฉ ์ถ๋ ฅ
print("\n=== ID๋ณ ์ค์ฝ์ด ํฉ์ฐ ๊ฒฐ๊ณผ ===")
for id, score in score_sums.sort_values(ascending=False).head(20).items():
print(f"ID: {id}, Total Score: {score}")
# ํฉ์ฐ๋ ์ค์ฝ์ด๋ก ์ ๋ ฌํ์ฌ ์์ 20๊ฐ ์ ํ
top_20_scores = score_sums.sort_values(ascending=False).head(20)
return top_20_scores
def create_duplicates_chart(score_sums):
if score_sums.empty:
return None
# ๋ฐ์ดํฐํ๋ ์ ์์ฑ
df = pd.DataFrame({
'id': score_sums.index,
'total_score': score_sums.values,
'rank': range(1, len(score_sums) + 1)
})
# ๋๋ฒ๊น
์ฉ ์ถ๋ ฅ
print("\n=== ์ฐจํธ ๋ฐ์ดํฐ ===")
print(df)
fig = px.bar(
df,
x='id',
y='rank',
title="Top 20 Spaces by Combined Trending Score",
height=500, # ์์ ๋ ๋ถ๋ถ
text='total_score'
)
fig.update_layout(
showlegend=False,
margin=dict(t=50, r=20, b=40, l=40),
plot_bgcolor='white',
paper_bgcolor='white',
xaxis_tickangle=-45,
yaxis=dict(
range=[20.5, 0.5],
tickmode='linear',
tick0=1,
dtick=1
)
)
fig.update_traces(
marker_color='#4CAF50',
texttemplate='%{text:.1f}',
textposition='outside',
hovertemplate='ID: %{x}<br>Rank: %{y}<br>Total Score: %{text:.1f}<extra></extra>'
)
fig.update_xaxes(
title_text="User ID",
showgrid=True,
gridwidth=1,
gridcolor='lightgray'
)
fig.update_yaxes(
title_text="Rank",
showgrid=True,
gridwidth=1,
gridcolor='lightgray'
)
return fig
def update_display(selection):
global daily_ranks_df
if not selection:
return None, gr.HTML(value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>")
try:
space_id = selection
latest_data = daily_ranks_df[
daily_ranks_df['id'] == space_id
].sort_values('date').iloc[-1]
info_text = f"""
<div style="padding: 16px; background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);">
<h3 style="margin: 0 0 12px 0;">Space Details</h3>
<p style="margin: 4px 0;"><strong>ID:</strong> {space_id}</p>
<p style="margin: 4px 0;"><strong>Current Rank:</strong> {int(latest_data['rank'])}</p>
<p style="margin: 4px 0;"><strong>Trending Score:</strong> {latest_data['trendingScore']:.2f}</p>
<p style="margin: 4px 0;"><strong>Created At:</strong> {latest_data['createdAt'].strftime('%Y-%m-%d')}</p>
<p style="margin: 12px 0 0 0;">
<a href="https://huggingface.co./spaces/{space_id}"
target="_blank"
style="color: #2563eb; text-decoration: none;">
View Space โ
</a>
</p>
</div>
"""
chart = create_trend_chart(space_id, daily_ranks_df)
return chart, gr.HTML(value=info_text)
except Exception as e:
print(f"Error in update_display: {e}")
return None, gr.HTML(value=f"<div style='color: red;'>Error processing data: {str(e)}</div>")
def load_and_process_data():
try:
url = "https://huggingface.co./datasets/cfahlgren1/hub-stats/resolve/main/spaces.parquet"
response = requests.get(url)
df = pd.read_parquet(BytesIO(response.content))
thirty_days_ago = datetime.now() - timedelta(days=30)
df['createdAt'] = pd.to_datetime(df['createdAt'])
df = df[df['createdAt'] >= thirty_days_ago].copy()
dates = pd.date_range(start=thirty_days_ago, end=datetime.now(), freq='D')
daily_ranks = []
for date in dates:
date_data = df[df['createdAt'].dt.date <= date.date()].copy()
date_data = date_data.sort_values(['trendingScore', 'id'], ascending=[False, True])
date_data['rank'] = range(1, len(date_data) + 1)
date_data['date'] = date.date()
daily_ranks.append(
date_data[['id', 'date', 'rank', 'trendingScore', 'createdAt']]
)
daily_ranks_df = pd.concat(daily_ranks, ignore_index=True)
latest_date = daily_ranks_df['date'].max()
top_100_spaces = daily_ranks_df[
(daily_ranks_df['date'] == latest_date) &
(daily_ranks_df['rank'] <= 100)
].sort_values('rank').copy()
return daily_ranks_df, top_100_spaces
except Exception as e:
print(f"Error loading data: {e}")
return pd.DataFrame(), pd.DataFrame()
# ๋ฐ์ดํฐ ๋ก๋
print("Loading initial data...")
daily_ranks_df, top_100_spaces = load_and_process_data()
print("Data loaded successfully!")
# ์ค๋ณต ์คํ์ด์ค ๋ฐ์ดํฐ ๊ณ์ฐ
duplicates = get_duplicate_spaces(top_100_spaces)
duplicates_chart = create_duplicates_chart(duplicates)
# Gradio ์ธํฐํ์ด์ค ์์ฑ
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# HF Space Ranking Tracker(~30 Dailys)
Track, analyze, and discover trending AI applications in the Hugging Face ecosystem. Our service continuously monitors and ranks all Spaces over a 30-day period, providing detailed analytics and daily ranking changes for the top 100 performers.
""")
with gr.Tabs():
with gr.Tab("Dashboard"):
with gr.Row(variant="panel"):
with gr.Column(scale=5): # ์์ ๋ ๋ถ๋ถ
trend_plot = gr.Plot(
label="Daily Rank Trend",
container=True
)
with gr.Column(scale=5): # ์์ ๋ ๋ถ๋ถ
duplicates_plot = gr.Plot(
label="Multiple Entries Analysis",
value=duplicates_chart,
container=True
)
with gr.Row():
info_box = gr.HTML(
value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>"
)
space_selection = gr.Radio(
choices=[row['id'] for _, row in top_100_spaces.iterrows()],
value=None,
visible=False
)
html_content = """
<div style='display: flex; flex-wrap: wrap; gap: 16px; justify-content: center;'>
""" + "".join([
f"""
<div class="space-card"
data-space-id="{row['id']}"
style="
border: 1px solid #e5e7eb;
border-radius: 8px;
padding: 16px;
margin: 8px;
background-color: hsl(210, {max(30, 90 - (row['rank'] / 100 * 60))}%, {min(97, 85 + (row['rank'] / 100 * 10))}%);
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
display: inline-block;
width: 250px;
vertical-align: top;
cursor: pointer;
transition: all 0.2s;
"
onmouseover="this.style.transform='translateY(-2px)';this.style.boxShadow='0 4px 6px rgba(0,0,0,0.1)';"
onmouseout="this.style.transform='none';this.style.boxShadow='0 1px 3px rgba(0,0,0,0.1)';"
>
<div style="font-size: 1.2em; font-weight: bold; margin-bottom: 8px;">
#{int(row['rank'])}
</div>
<div style="margin-bottom: 8px;">
{row['id']}
</div>
<div style="color: #666; margin-bottom: 12px;">
Score: {row['trendingScore']:.2f}
</div>
<div style="display: flex; gap: 8px;">
<a href="https://huggingface.co./spaces/{row['id']}"
target="_blank"
style="padding: 6px 12px; background-color: white; color: #2563eb; text-decoration: none; border-radius: 4px; font-size: 0.9em; border: 1px solid #2563eb;"
onclick="event.stopPropagation();">
View Space โ
</a>
<button onclick="event.preventDefault(); gradioEvent('{row['id']}');"
style="padding: 6px 12px; background-color: #2563eb; color: white; border: none; border-radius: 4px; cursor: pointer; font-size: 0.9em;">
View Trend
</button>
</div>
</div>
"""
for _, row in top_100_spaces.iterrows()
]) + """
</div>
<script>
function gradioEvent(spaceId) {
const radio = document.querySelector(`input[type="radio"][value="${spaceId}"]`);
if (radio) {
radio.checked = true;
const event = new Event('change');
radio.dispatchEvent(event);
}
}
</script>
"""
with gr.Row():
space_grid = gr.HTML(value=html_content)
with gr.Tab("About"):
gr.Markdown("""
### Our Tracking System
#### What We Track
- Daily ranking changes for all Hugging Face Spaces
- Comprehensive trending scores based on 30-day activity
- Detailed performance metrics for top 100 Spaces
- Historical ranking data with daily granularity
#### Key Features
- **Real-time Rankings**: Stay updated with daily rank changes
- **Interactive Visualizations**: Track ranking trajectories over time
- **Trend Analysis**: Identify emerging popular AI applications
- **Direct Access**: Quick links to explore trending Spaces
- **Performance Metrics**: Detailed trending scores and statistics
### Why Use HF Space Ranking Tracker?
- Discover trending AI demos and applications
- Monitor your Space's performance and popularity
- Identify emerging trends in the AI community
- Make data-driven decisions about your AI projects
- Stay ahead of the curve in AI application development
Our dashboard provides a comprehensive view of the Hugging Face Spaces ecosystem, helping developers, researchers, and enthusiasts track and understand the dynamics of popular AI applications. Whether you're monitoring your own Space's performance or discovering new trending applications, HF Space Ranking Tracker offers the insights you need.
Experience the pulse of the AI community through our daily updated rankings and discover what's making waves in the world of practical AI applications.
""")
space_selection.change(
fn=update_display,
inputs=[space_selection],
outputs=[trend_plot, info_box],
api_name="update_display"
)
if __name__ == "__main__":
demo.launch(share=True) |