File size: 13,587 Bytes
360fc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6775e1
8b6deaa
360fc46
 
 
 
 
 
b6775e1
 
 
 
360fc46
 
 
 
b6775e1
 
360fc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffa842
8b6deaa
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffa842
8b6deaa
 
6ffa842
 
8b6deaa
 
 
 
 
 
 
 
 
 
 
6ffa842
8b6deaa
 
 
 
 
 
6ffa842
 
 
 
 
 
 
8b6deaa
 
 
 
 
 
 
6ffa842
 
 
8b6deaa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ffa842
 
 
 
b6775e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360fc46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6775e1
 
 
360fc46
 
 
 
 
 
 
 
 
b6775e1
360fc46
6ffa842
 
 
 
360fc46
 
b6775e1
8b6deaa
360fc46
b6775e1
 
 
 
 
 
8b6deaa
6ffa842
 
 
 
8b6deaa
6ffa842
 
 
 
 
360fc46
b6775e1
 
 
 
360fc46
b6775e1
 
 
 
360fc46
b6775e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360fc46
b6775e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
360fc46
b6775e1
360fc46
b6775e1
 
 
360fc46
 
 
8b6deaa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import gradio as gr
import pandas as pd
import plotly.express as px
from datetime import datetime, timedelta
import requests
from io import BytesIO

def create_trend_chart(space_id, daily_ranks_df):
    if space_id is None or daily_ranks_df.empty:
        return None
    
    try:
        space_data = daily_ranks_df[daily_ranks_df['id'] == space_id].copy()
        if space_data.empty:
            return None
        
        space_data = space_data.sort_values('date')
        
        fig = px.line(
            space_data,
            x='date',
            y='rank',
            title=f'Daily Rank Trend for {space_id}',
            labels={'date': 'Date', 'rank': 'Rank'},
            markers=True,
            height=500  # ์ˆ˜์ •๋œ ๋ถ€๋ถ„
        )
        
        fig.update_layout(
            xaxis_title="Date",
            yaxis_title="Rank",
            yaxis=dict(
                range=[100, 1],
                tickmode='linear',
                tick0=1,
                dtick=10
            ),
            hovermode='x unified',
            plot_bgcolor='white',
            paper_bgcolor='white',
            showlegend=False,
            margin=dict(t=50, r=20, b=40, l=40)
        )
        
        fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
        fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
        
        fig.update_traces(
            line_color='#2563eb',
            line_width=2,
            marker=dict(size=8, color='#2563eb')
        )
        
        return fig
    except Exception as e:
        print(f"Error creating chart: {e}")
        return None

def get_duplicate_spaces(top_100_spaces):
    # ID์—์„œ username/spacename ํ˜•์‹์—์„œ username๋งŒ ์ถ”์ถœ
    top_100_spaces['clean_id'] = top_100_spaces['id'].apply(lambda x: x.split('/')[0])
    
    # username๋ณ„ trending score ํ•ฉ์‚ฐ
    score_sums = top_100_spaces.groupby('clean_id')['trendingScore'].sum()
    
    # ๋””๋ฒ„๊น…์šฉ ์ถœ๋ ฅ
    print("\n=== ID๋ณ„ ์Šค์ฝ”์–ด ํ•ฉ์‚ฐ ๊ฒฐ๊ณผ ===")
    for id, score in score_sums.sort_values(ascending=False).head(20).items():
        print(f"ID: {id}, Total Score: {score}")
    
    # ํ•ฉ์‚ฐ๋œ ์Šค์ฝ”์–ด๋กœ ์ •๋ ฌํ•˜์—ฌ ์ƒ์œ„ 20๊ฐœ ์„ ํƒ
    top_20_scores = score_sums.sort_values(ascending=False).head(20)
    return top_20_scores

def create_duplicates_chart(score_sums):
    if score_sums.empty:
        return None
    
    # ๋ฐ์ดํ„ฐํ”„๋ ˆ์ž„ ์ƒ์„ฑ
    df = pd.DataFrame({
        'id': score_sums.index,
        'total_score': score_sums.values,
        'rank': range(1, len(score_sums) + 1)
    })
    
    # ๋””๋ฒ„๊น…์šฉ ์ถœ๋ ฅ
    print("\n=== ์ฐจํŠธ ๋ฐ์ดํ„ฐ ===")
    print(df)
    
    fig = px.bar(
        df,
        x='id',
        y='rank',
        title="Top 20 Spaces by Combined Trending Score",
        height=500,  # ์ˆ˜์ •๋œ ๋ถ€๋ถ„
        text='total_score'
    )
    
    fig.update_layout(
        showlegend=False,
        margin=dict(t=50, r=20, b=40, l=40),
        plot_bgcolor='white',
        paper_bgcolor='white',
        xaxis_tickangle=-45,
        yaxis=dict(
            range=[20.5, 0.5],
            tickmode='linear',
            tick0=1,
            dtick=1
        )
    )
    
    fig.update_traces(
        marker_color='#4CAF50',
        texttemplate='%{text:.1f}',
        textposition='outside',
        hovertemplate='ID: %{x}<br>Rank: %{y}<br>Total Score: %{text:.1f}<extra></extra>'
    )
    
    fig.update_xaxes(
        title_text="User ID",
        showgrid=True,
        gridwidth=1,
        gridcolor='lightgray'
    )
    
    fig.update_yaxes(
        title_text="Rank",
        showgrid=True,
        gridwidth=1,
        gridcolor='lightgray'
    )
    
    return fig

def update_display(selection):
    global daily_ranks_df
    
    if not selection:
        return None, gr.HTML(value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>")
    
    try:
        space_id = selection
        
        latest_data = daily_ranks_df[
            daily_ranks_df['id'] == space_id
        ].sort_values('date').iloc[-1]
        
        info_text = f"""
        <div style="padding: 16px; background-color: white; border-radius: 8px; box-shadow: 0 1px 3px rgba(0,0,0,0.1);">
            <h3 style="margin: 0 0 12px 0;">Space Details</h3>
            <p style="margin: 4px 0;"><strong>ID:</strong> {space_id}</p>
            <p style="margin: 4px 0;"><strong>Current Rank:</strong> {int(latest_data['rank'])}</p>
            <p style="margin: 4px 0;"><strong>Trending Score:</strong> {latest_data['trendingScore']:.2f}</p>
            <p style="margin: 4px 0;"><strong>Created At:</strong> {latest_data['createdAt'].strftime('%Y-%m-%d')}</p>
            <p style="margin: 12px 0 0 0;">
                <a href="https://huggingface.co./spaces/{space_id}" 
                   target="_blank" 
                   style="color: #2563eb; text-decoration: none;">
                    View Space โ†—
                </a>
            </p>
        </div>
        """
        
        chart = create_trend_chart(space_id, daily_ranks_df)
        
        return chart, gr.HTML(value=info_text)
        
    except Exception as e:
        print(f"Error in update_display: {e}")
        return None, gr.HTML(value=f"<div style='color: red;'>Error processing data: {str(e)}</div>")

def load_and_process_data():
    try:
        url = "https://huggingface.co./datasets/cfahlgren1/hub-stats/resolve/main/spaces.parquet"
        response = requests.get(url)
        df = pd.read_parquet(BytesIO(response.content))
        
        thirty_days_ago = datetime.now() - timedelta(days=30)
        df['createdAt'] = pd.to_datetime(df['createdAt'])
        df = df[df['createdAt'] >= thirty_days_ago].copy()
        
        dates = pd.date_range(start=thirty_days_ago, end=datetime.now(), freq='D')
        daily_ranks = []
        
        for date in dates:
            date_data = df[df['createdAt'].dt.date <= date.date()].copy()
            date_data = date_data.sort_values(['trendingScore', 'id'], ascending=[False, True])
            date_data['rank'] = range(1, len(date_data) + 1)
            date_data['date'] = date.date()
            daily_ranks.append(
                date_data[['id', 'date', 'rank', 'trendingScore', 'createdAt']]
            )
        
        daily_ranks_df = pd.concat(daily_ranks, ignore_index=True)
        
        latest_date = daily_ranks_df['date'].max()
        top_100_spaces = daily_ranks_df[
            (daily_ranks_df['date'] == latest_date) &
            (daily_ranks_df['rank'] <= 100)
        ].sort_values('rank').copy()
        
        return daily_ranks_df, top_100_spaces
    except Exception as e:
        print(f"Error loading data: {e}")
        return pd.DataFrame(), pd.DataFrame()

# ๋ฐ์ดํ„ฐ ๋กœ๋“œ
print("Loading initial data...")
daily_ranks_df, top_100_spaces = load_and_process_data()
print("Data loaded successfully!")

# ์ค‘๋ณต ์ŠคํŽ˜์ด์Šค ๋ฐ์ดํ„ฐ ๊ณ„์‚ฐ
duplicates = get_duplicate_spaces(top_100_spaces)
duplicates_chart = create_duplicates_chart(duplicates)

# Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ƒ์„ฑ
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # HF Space Ranking Tracker(~30 Dailys)
    
    Track, analyze, and discover trending AI applications in the Hugging Face ecosystem. Our service continuously monitors and ranks all Spaces over a 30-day period, providing detailed analytics and daily ranking changes for the top 100 performers.
    """)
    
    with gr.Tabs():
        with gr.Tab("Dashboard"):
            with gr.Row(variant="panel"):
                with gr.Column(scale=5):  # ์ˆ˜์ •๋œ ๋ถ€๋ถ„
                    trend_plot = gr.Plot(
                        label="Daily Rank Trend",
                        container=True
                    )
                with gr.Column(scale=5):  # ์ˆ˜์ •๋œ ๋ถ€๋ถ„
                    duplicates_plot = gr.Plot(
                        label="Multiple Entries Analysis",
                        value=duplicates_chart,
                        container=True
                    )
            
            with gr.Row():
                info_box = gr.HTML(
                    value="<div style='text-align: center; padding: 20px; color: #666;'>Select a space to view details</div>"
                )
            
            space_selection = gr.Radio(
                choices=[row['id'] for _, row in top_100_spaces.iterrows()],
                value=None,
                visible=False
            )
            
            html_content = """
            <div style='display: flex; flex-wrap: wrap; gap: 16px; justify-content: center;'>
            """ + "".join([
                f"""
                <div class="space-card" 
                     data-space-id="{row['id']}"
                     style="
                    border: 1px solid #e5e7eb;
                    border-radius: 8px;
                    padding: 16px;
                    margin: 8px;
                    background-color: hsl(210, {max(30, 90 - (row['rank'] / 100 * 60))}%, {min(97, 85 + (row['rank'] / 100 * 10))}%);
                    box-shadow: 0 1px 3px rgba(0,0,0,0.1);
                    display: inline-block;
                    width: 250px;
                    vertical-align: top;
                    cursor: pointer;
                    transition: all 0.2s;
                "
                onmouseover="this.style.transform='translateY(-2px)';this.style.boxShadow='0 4px 6px rgba(0,0,0,0.1)';"
                onmouseout="this.style.transform='none';this.style.boxShadow='0 1px 3px rgba(0,0,0,0.1)';"
                >
                    <div style="font-size: 1.2em; font-weight: bold; margin-bottom: 8px;">
                        #{int(row['rank'])}
                    </div>
                    <div style="margin-bottom: 8px;">
                        {row['id']}
                    </div>
                    <div style="color: #666; margin-bottom: 12px;">
                        Score: {row['trendingScore']:.2f}
                    </div>
                    <div style="display: flex; gap: 8px;">
                        <a href="https://huggingface.co./spaces/{row['id']}" 
                           target="_blank" 
                           style="padding: 6px 12px; background-color: white; color: #2563eb; text-decoration: none; border-radius: 4px; font-size: 0.9em; border: 1px solid #2563eb;"
                           onclick="event.stopPropagation();">
                            View Space โ†—
                        </a>
                        <button onclick="event.preventDefault(); gradioEvent('{row['id']}');"
                                style="padding: 6px 12px; background-color: #2563eb; color: white; border: none; border-radius: 4px; cursor: pointer; font-size: 0.9em;">
                            View Trend
                        </button>
                    </div>
                </div>
                """
                for _, row in top_100_spaces.iterrows()
            ]) + """
            </div>
            <script>
            function gradioEvent(spaceId) {
                const radio = document.querySelector(`input[type="radio"][value="${spaceId}"]`);
                if (radio) {
                    radio.checked = true;
                    const event = new Event('change');
                    radio.dispatchEvent(event);
                }
            }
            </script>
            """
            
            with gr.Row():
                space_grid = gr.HTML(value=html_content)
        
        with gr.Tab("About"):
            gr.Markdown("""
            ### Our Tracking System
            
            #### What We Track
            - Daily ranking changes for all Hugging Face Spaces
            - Comprehensive trending scores based on 30-day activity
            - Detailed performance metrics for top 100 Spaces
            - Historical ranking data with daily granularity
            
            #### Key Features
            - **Real-time Rankings**: Stay updated with daily rank changes
            - **Interactive Visualizations**: Track ranking trajectories over time
            - **Trend Analysis**: Identify emerging popular AI applications
            - **Direct Access**: Quick links to explore trending Spaces
            - **Performance Metrics**: Detailed trending scores and statistics
            
            ### Why Use HF Space Ranking Tracker?
            - Discover trending AI demos and applications
            - Monitor your Space's performance and popularity
            - Identify emerging trends in the AI community
            - Make data-driven decisions about your AI projects
            - Stay ahead of the curve in AI application development
            
            Our dashboard provides a comprehensive view of the Hugging Face Spaces ecosystem, helping developers, researchers, and enthusiasts track and understand the dynamics of popular AI applications. Whether you're monitoring your own Space's performance or discovering new trending applications, HF Space Ranking Tracker offers the insights you need.
            
            Experience the pulse of the AI community through our daily updated rankings and discover what's making waves in the world of practical AI applications.
            """)
    
    space_selection.change(
        fn=update_display,
        inputs=[space_selection],
        outputs=[trend_plot, info_box],
        api_name="update_display"
    )

if __name__ == "__main__":
    demo.launch(share=True)