import gradio as gr import numpy as np import random import spaces import torch from diffusers import DiffusionPipeline from transformers import pipeline # 번역 파이프라인 초기화 translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") dtype = torch.bfloat16 device = "cuda" if torch.cuda.is_available() else "cpu" pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 @spaces.GPU() def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) # 한글 입력 감지 및 번역 if any('\uAC00' <= char <= '\uD7A3' for char in prompt): print("Translating Korean prompt...") translated_prompt = translator(prompt, max_length=512)[0]['translation_text'] print("Translated prompt:", translated_prompt) prompt = translated_prompt image = pipe( prompt = prompt, width = width, height = height, num_inference_steps = num_inference_steps, generator = generator, guidance_scale=0.0 ).images[0] return image, seed examples = [ "Create a new logo for a tech startup", "Design an engaging Instagram post for a fashion brand", "Create a new character for a social media campaign", "Generate a marketing advertisement for a new product launch", "Design a social media banner for a charity event", "Create a new branding concept for a luxury hotel", "Design a promotional video thumbnail for a movie premiere", "Generate a marketing campaign for a sustainable lifestyle brand" ] css = """ footer { visibility: hidden; } """ with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, elem_id="prompt" ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False, elem_id="result") with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=4, ) gr.Examples( examples=examples, fn=infer, inputs=[prompt], outputs=[result, seed], cache_examples="lazy" ) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps], outputs=[result, seed] ) demo.launch()