File size: 4,399 Bytes
7abf701
 
 
 
 
 
a6021dc
 
5114b0d
7abf701
5114b0d
7abf701
5114b0d
7abf701
 
 
 
 
 
 
 
 
 
a6021dc
 
 
4ff5580
a6021dc
4ff5580
a6021dc
 
7abf701
 
 
 
 
 
 
 
 
 
5114b0d
c5562d1
 
 
 
 
 
 
5114b0d
7abf701
3319cd3
8da4629
 
3319cd3
7abf701
 
a6021dc
7abf701
 
 
4ff5580
7abf701
 
4ff5580
7abf701
3319cd3
7abf701
 
4ff5580
7abf701
4ff5580
7abf701
4ff5580
7abf701
4ff5580
7abf701
 
 
 
 
 
4ff5580
7abf701
 
 
4ff5580
7abf701
 
 
8da4629
7abf701
 
 
4ff5580
7abf701
 
 
8da4629
7abf701
 
 
 
4ff5580
7abf701
 
 
 
 
 
 
a6021dc
 
 
 
7abf701
 
 
a6021dc
 
 
 
 
 
7abf701
4ff5580
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline

# ๋ฒˆ์—ญ ํŒŒ์ดํ”„๋ผ์ธ ๋ฐ ํ•˜๋“œ์›จ์–ด ์„ค์ •
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en", device=device)

dtype = torch.bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    # ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
    if any('\uAC00' <= char <= '\uD7A3' for char in prompt):
        print("ํ•œ๊ตญ์–ด ํ”„๋กฌํ”„ํŠธ ๋ฒˆ์—ญ ์ค‘...")
        translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
        print("๋ฒˆ์—ญ๋œ ํ”„๋กฌํ”„ํŠธ:", translated_prompt)
        prompt = translated_prompt

    image = pipe(
            prompt = prompt,
            width = width,
            height = height,
            num_inference_steps = num_inference_steps,
            generator = generator,
            guidance_scale=0.0
    ).images[0]
    return image, seed

examples = [
    ["Create a new logo for a [Color Tone: Blue] [Design Concept: ROCKET] [Text: 'WORLD'] [Background: BLUE COLOR]"],
    ["Create a new logo for a [Color Tone: Blue] [Design Concept: UNIVERSE] [Text: 'COCA COLA'] [Background: COLORFUL]"],   
    ["simple futuristic logo kamikaze drone on a shield, minimalistic, vector, 2D, simple lines, White background --v 4"],
    ["Create a new logo for a [Color Tone: Blue] [Design Concept: MOUNTAIN] [Text: '[email protected]'] [Background: RED COLOR] "],
    ["Create a new logo for a [Color Tone: Blue] [Design Concept: HUMAN] [Text: 'ABC.COM'] [Background: YELLOW COLOR] "],
    ["Create a new logo for a [Color Tone: Blue] [Design Concept: HOUSE] [Text: 'T.010-1234-1234'] [Background: COLORFUL] "],    
    ["Create a new logo for a [Color Tone: Blue] [Design Concept: LION] [Text: 'SOCCER CLUB'] [Background: GREEN COLOR]"]
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="ํ”„๋กฌํ”„ํŠธ",
                show_label=False,
                max_lines=1,
                placeholder="ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”",
                container=False,
                elem_id="prompt"
            )

            run_button = gr.Button("์‹คํ–‰", scale=0)

        result = gr.Image(label="๊ฒฐ๊ณผ", show_label=False, elem_id="result")

        with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ •", open=False, elem_id="advanced-settings"):
            seed = gr.Slider(
                label="์‹œ๋“œ",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="์‹œ๋“œ ๋ฌด์ž‘์œ„ํ™”", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="๋„ˆ๋น„",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="๋†’์ด",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="์ถ”๋ก  ๋‹จ๊ณ„ ์ˆ˜",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[result, seed]
        )

demo.launch()