File size: 3,949 Bytes
7abf701
 
 
 
 
 
a6021dc
 
 
 
7abf701
 
 
 
 
 
 
 
 
 
 
 
 
 
a6021dc
 
 
 
 
 
 
 
7abf701
 
 
 
 
 
 
 
 
 
 
3319cd3
 
 
 
 
 
 
 
7abf701
 
3319cd3
8da4629
 
3319cd3
7abf701
 
a6021dc
7abf701
 
 
 
 
 
 
 
3319cd3
7abf701
 
 
 
3319cd3
7abf701
3319cd3
7abf701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da4629
7abf701
 
 
 
 
 
 
8da4629
7abf701
 
 
 
 
 
 
 
 
 
 
 
a6021dc
 
 
 
7abf701
 
 
a6021dc
 
 
 
 
 
7abf701
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from transformers import pipeline

# ๋ฒˆ์—ญ ํŒŒ์ดํ”„๋ผ์ธ ์ดˆ๊ธฐํ™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

@spaces.GPU()
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)

    # ํ•œ๊ธ€ ์ž…๋ ฅ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
    if any('\uAC00' <= char <= '\uD7A3' for char in prompt):
        print("Translating Korean prompt...")
        translated_prompt = translator(prompt, max_length=512)[0]['translation_text']
        print("Translated prompt:", translated_prompt)
        prompt = translated_prompt

    image = pipe(
            prompt = prompt,
            width = width,
            height = height,
            num_inference_steps = num_inference_steps,
            generator = generator,
            guidance_scale=0.0
    ).images[0]
    return image, seed

examples = [
    "Create a new logo for a tech startup",
    "Design an engaging Instagram post for a fashion brand",
    "Create a new character for a social media campaign",
    "Generate a marketing advertisement for a new product launch",
    "Design a social media banner for a charity event",
    "Create a new branding concept for a luxury hotel",
    "Design a promotional video thumbnail for a movie premiere",
    "Generate a marketing campaign for a sustainable lifestyle brand"
]

css = """
footer {
    visibility: hidden;
}
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) as demo:
    with gr.Column(elem_id="col-container"):
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
                elem_id="prompt"
            )

            run_button = gr.Button("Run", scale=0)

        result = gr.Image(label="Result", show_label=False, elem_id="result")

        with gr.Accordion("Advanced Settings", open=False, elem_id="advanced-settings"):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[result, seed]
        )

demo.launch()