import spaces from functools import lru_cache import gradio as gr from gradio_toggle import Toggle import torch from huggingface_hub import snapshot_download from transformers import CLIPProcessor, CLIPModel, pipeline import random from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder from xora.models.transformers.transformer3d import Transformer3DModel from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier from xora.schedulers.rf import RectifiedFlowScheduler from xora.pipelines.pipeline_xora_video import XoraVideoPipeline from transformers import T5EncoderModel, T5Tokenizer from xora.utils.conditioning_method import ConditioningMethod from pathlib import Path import safetensors.torch import json import numpy as np import cv2 from PIL import Image import tempfile import os import gc import csv from datetime import datetime from openai import OpenAI # 한글-영어 번역기 초기화 translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en") torch.backends.cuda.matmul.allow_tf32 = False torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False torch.backends.cudnn.allow_tf32 = False torch.backends.cudnn.deterministic = False torch.backends.cuda.preferred_blas_library="cublas" torch.set_float32_matmul_precision("highest") MAX_SEED = np.iinfo(np.int32).max # Load Hugging Face token if needed hf_token = os.getenv("HF_TOKEN") openai_api_key = os.getenv("OPENAI_API_KEY") client = OpenAI(api_key=openai_api_key) system_prompt_t2v_path = "assets/system_prompt_t2v.txt" with open(system_prompt_t2v_path, "r") as f: system_prompt_t2v = f.read() # Set model download directory within Hugging Face Spaces model_path = "asset" commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc' if not os.path.exists(model_path): snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token) # Global variables to load components vae_dir = Path(model_path) / "vae" unet_dir = Path(model_path) / "unet" scheduler_dir = Path(model_path) / "scheduler" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0")) clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path) def process_prompt(prompt): # 한글이 포함되어 있는지 확인 if any(ord('가') <= ord(char) <= ord('힣') for char in prompt): # 한글을 영어로 번역 translated = translator(prompt)[0]['translation_text'] return translated return prompt def compute_clip_embedding(text=None): inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device) outputs = clip_model.get_text_features(**inputs) embedding = outputs.detach().cpu().numpy().flatten().tolist() return embedding def load_vae(vae_dir): vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors" vae_config_path = vae_dir / "config.json" with open(vae_config_path, "r") as f: vae_config = json.load(f) vae = CausalVideoAutoencoder.from_config(vae_config) vae_state_dict = safetensors.torch.load_file(vae_ckpt_path) vae.load_state_dict(vae_state_dict) return vae.to(device).to(torch.bfloat16) def load_unet(unet_dir): unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors" unet_config_path = unet_dir / "config.json" transformer_config = Transformer3DModel.load_config(unet_config_path) transformer = Transformer3DModel.from_config(transformer_config) unet_state_dict = safetensors.torch.load_file(unet_ckpt_path) transformer.load_state_dict(unet_state_dict, strict=True) return transformer.to(device).to(torch.bfloat16) def load_scheduler(scheduler_dir): scheduler_config_path = scheduler_dir / "scheduler_config.json" scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path) return RectifiedFlowScheduler.from_config(scheduler_config) # Preset options for resolution and frame configuration preset_options = [ {"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41}, {"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49}, {"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57}, {"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100}, {"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200}, {"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300}, {"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80}, {"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120}, {"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64}, {"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90}, {"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64}, {"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100}, {"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97}, {"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160}, {"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200}, ] def preset_changed(preset): if preset != "Custom": selected = next(item for item in preset_options if item["label"] == preset) return ( selected["height"], selected["width"], selected["num_frames"], gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), ) else: return ( None, None, None, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), ) # Load models vae = load_vae(vae_dir) unet = load_unet(unet_dir) scheduler = load_scheduler(scheduler_dir) patchifier = SymmetricPatchifier(patch_size=1) text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0")) tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer") pipeline = XoraVideoPipeline( transformer=unet, patchifier=patchifier, text_encoder=text_encoder, tokenizer=tokenizer, scheduler=scheduler, vae=vae, ).to(torch.device("cuda:0")) def enhance_prompt_if_enabled(prompt, enhance_toggle): if not enhance_toggle: print("Enhance toggle is off, Prompt: ", prompt) return prompt messages = [ {"role": "system", "content": system_prompt_t2v}, {"role": "user", "content": prompt}, ] try: response = client.chat.completions.create( model="gpt-4-mini", messages=messages, max_tokens=200, ) print("Enhanced Prompt: ", response.choices[0].message.content.strip()) return response.choices[0].message.content.strip() except Exception as e: print(f"Error: {e}") return prompt @spaces.GPU(duration=90) def generate_video_from_text_90( prompt="", enhance_prompt_toggle=False, negative_prompt="", frame_rate=25, seed=random.randint(0, MAX_SEED), num_inference_steps=30, guidance_scale=3.2, height=768, width=768, num_frames=60, progress=gr.Progress(), ): # 프롬프트 전처리 (한글 -> 영어) prompt = process_prompt(prompt) negative_prompt = process_prompt(negative_prompt) if len(prompt.strip()) < 50: raise gr.Error( "Prompt must be at least 50 characters long. Please provide more details for the best results.", duration=5, ) prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle) sample = { "prompt": prompt, "prompt_attention_mask": None, "negative_prompt": negative_prompt, "negative_prompt_attention_mask": None, "media_items": None, } generator = torch.Generator(device="cuda").manual_seed(seed) def gradio_progress_callback(self, step, timestep, kwargs): progress((step + 1) / num_inference_steps) try: with torch.no_grad(): images = pipeline( num_inference_steps=num_inference_steps, num_images_per_prompt=1, guidance_scale=guidance_scale, generator=generator, output_type="pt", height=height, width=width, num_frames=num_frames, frame_rate=frame_rate, **sample, is_video=True, vae_per_channel_normalize=True, conditioning_method=ConditioningMethod.UNCONDITIONAL, mixed_precision=True, callback_on_step_end=gradio_progress_callback, ).images except Exception as e: raise gr.Error( f"An error occurred while generating the video. Please try again. Error: {e}", duration=5, ) finally: torch.cuda.empty_cache() gc.collect() output_path = tempfile.mktemp(suffix=".mp4") video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy() video_np = (video_np * 255).astype(np.uint8) height, width = video_np.shape[1:3] out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height)) for frame in video_np[..., ::-1]: out.write(frame) out.release() del images del video_np torch.cuda.empty_cache() return output_path def create_advanced_options(): with gr.Accordion("Step 4: Advanced Options (Optional)", open=False): seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373) inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40) guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2) height_slider = gr.Slider( label="4.4 Height", minimum=256, maximum=1024, step=64, value=768, visible=False, ) width_slider = gr.Slider( label="4.5 Width", minimum=256, maximum=1024, step=64, value=768, visible=False, ) num_frames_slider = gr.Slider( label="4.5 Number of Frames", minimum=1, maximum=500, step=1, value=60, visible=False, ) return [ seed, inference_steps, guidance_scale, height_slider, width_slider, num_frames_slider, ] with gr.Blocks(theme=gr.themes.Soft()) as iface: with gr.Column(): txt2vid_prompt = gr.Textbox( label="Step 1: Enter Your Prompt (한글 또는 영어)", placeholder="생성하고 싶은 비디오를 설명하세요 (최소 50자)...", value="긴 갈색 머리와 밝은 피부를 가진 여성이 긴 금발 머리를 가진 다른 여성을 향해 미소 짓습니다. 갈색 머리 여성은 검은 재킷을 입고 있으며 오른쪽 뺨에 작고 거의 눈에 띄지 않는 점이 있습니다. 카메라 앵글은 갈색 머리 여성의 얼굴에 초점을 맞춘 클로즈업입니다. 조명은 따뜻하고 자연스러우며, 아마도 지는 해에서 나오는 것 같아 장면에 부드러운 빛을 비춥니다.", lines=5, ) txt2vid_enhance_toggle = Toggle( label="Enhance Prompt", value=False, interactive=True, ) txt2vid_negative_prompt = gr.Textbox( label="Step 2: Enter Negative Prompt", placeholder="비디오에서 원하지 않는 요소를 설명하세요...", value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly", lines=2, ) txt2vid_preset = gr.Dropdown( choices=[p["label"] for p in preset_options], value="512x512, 160 frames", label="Step 3.1: Choose Resolution Preset", ) txt2vid_frame_rate = gr.Slider( label="Step 3.2: Frame Rate", minimum=6, maximum=60, step=1, value=20, ) txt2vid_advanced = create_advanced_options() txt2vid_generate = gr.Button( "Step 5: Generate Video", variant="primary", size="lg", ) txt2vid_output = gr.Video(label="Generated Output") txt2vid_preset.change( fn=preset_changed, inputs=[txt2vid_preset], outputs=txt2vid_advanced[3:], ) txt2vid_generate.click( fn=generate_video_from_text_90, inputs=[ txt2vid_prompt, txt2vid_enhance_toggle, txt2vid_negative_prompt, txt2vid_frame_rate, *txt2vid_advanced, ], outputs=txt2vid_output, concurrency_limit=1, concurrency_id="generate_video", queue=True, ) iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False) # ===== Application Startup at 2024-12-20 01:30:34 =====