File size: 10,169 Bytes
1504958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import math
from abc import ABC, abstractmethod
from dataclasses import dataclass
from typing import Callable, Optional, Tuple, Union

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.schedulers.scheduling_utils import SchedulerMixin
from diffusers.utils import BaseOutput
from torch import Tensor

from xora.utils.torch_utils import append_dims


def simple_diffusion_resolution_dependent_timestep_shift(
    samples: Tensor,
    timesteps: Tensor,
    n: int = 32 * 32,
) -> Tensor:
    if len(samples.shape) == 3:
        _, m, _ = samples.shape
    elif len(samples.shape) in [4, 5]:
        m = math.prod(samples.shape[2:])
    else:
        raise ValueError(
            "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)"
        )
    snr = (timesteps / (1 - timesteps)) ** 2
    shift_snr = torch.log(snr) + 2 * math.log(m / n)
    shifted_timesteps = torch.sigmoid(0.5 * shift_snr)

    return shifted_timesteps


def time_shift(mu: float, sigma: float, t: Tensor):
    return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)


def get_normal_shift(
    n_tokens: int,
    min_tokens: int = 1024,
    max_tokens: int = 4096,
    min_shift: float = 0.95,
    max_shift: float = 2.05,
) -> Callable[[float], float]:
    m = (max_shift - min_shift) / (max_tokens - min_tokens)
    b = min_shift - m * min_tokens
    return m * n_tokens + b


def sd3_resolution_dependent_timestep_shift(
    samples: Tensor, timesteps: Tensor
) -> Tensor:
    """
    Shifts the timestep schedule as a function of the generated resolution.

    In the SD3 paper, the authors empirically how to shift the timesteps based on the resolution of the target images.
    For more details: https://arxiv.org/pdf/2403.03206

    In Flux they later propose a more dynamic resolution dependent timestep shift, see:
    https://github.com/black-forest-labs/flux/blob/87f6fff727a377ea1c378af692afb41ae84cbe04/src/flux/sampling.py#L66


    Args:
        samples (Tensor): A batch of samples with shape (batch_size, channels, height, width) or
            (batch_size, channels, frame, height, width).
        timesteps (Tensor): A batch of timesteps with shape (batch_size,).

    Returns:
        Tensor: The shifted timesteps.
    """
    if len(samples.shape) == 3:
        _, m, _ = samples.shape
    elif len(samples.shape) in [4, 5]:
        m = math.prod(samples.shape[2:])
    else:
        raise ValueError(
            "Samples must have shape (b, t, c), (b, c, h, w) or (b, c, f, h, w)"
        )

    shift = get_normal_shift(m)
    return time_shift(shift, 1, timesteps)


class TimestepShifter(ABC):
    @abstractmethod
    def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
        pass


@dataclass
class RectifiedFlowSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None


class RectifiedFlowScheduler(SchedulerMixin, ConfigMixin, TimestepShifter):
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps=1000,
        shifting: Optional[str] = None,
        base_resolution: int = 32**2,
    ):
        super().__init__()
        self.init_noise_sigma = 1.0
        self.num_inference_steps = None
        self.timesteps = self.sigmas = torch.linspace(
            1, 1 / num_train_timesteps, num_train_timesteps
        )
        self.delta_timesteps = self.timesteps - torch.cat(
            [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])]
        )
        self.shifting = shifting
        self.base_resolution = base_resolution

    def shift_timesteps(self, samples: Tensor, timesteps: Tensor) -> Tensor:
        if self.shifting == "SD3":
            return sd3_resolution_dependent_timestep_shift(samples, timesteps)
        elif self.shifting == "SimpleDiffusion":
            return simple_diffusion_resolution_dependent_timestep_shift(
                samples, timesteps, self.base_resolution
            )
        return timesteps

    def set_timesteps(
        self,
        num_inference_steps: int,
        samples: Tensor,
        device: Union[str, torch.device] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`): The number of diffusion steps used when generating samples.
            samples (`Tensor`): A batch of samples with shape.
            device (`Union[str, torch.device]`, *optional*): The device to which the timesteps tensor will be moved.
        """
        num_inference_steps = min(self.config.num_train_timesteps, num_inference_steps)
        timesteps = torch.linspace(1, 1 / num_inference_steps, num_inference_steps).to(
            device
        )
        self.timesteps = self.shift_timesteps(samples, timesteps)
        self.delta_timesteps = self.timesteps - torch.cat(
            [self.timesteps[1:], torch.zeros_like(self.timesteps[-1:])]
        )
        self.num_inference_steps = num_inference_steps
        self.sigmas = self.timesteps

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Optional[int] = None
    ) -> torch.FloatTensor:
        # pylint: disable=unused-argument
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`int`, optional): current timestep

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        return sample

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: torch.FloatTensor,
        sample: torch.FloatTensor,
        eta: float = 0.0,
        use_clipped_model_output: bool = False,
        generator=None,
        variance_noise: Optional[torch.FloatTensor] = None,
        return_dict: bool = True,
    ) -> Union[RectifiedFlowSchedulerOutput, Tuple]:
        # pylint: disable=unused-argument
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            eta (`float`):
                The weight of noise for added noise in diffusion step.
            use_clipped_model_output (`bool`, defaults to `False`):
                If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
                because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
                clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
                `use_clipped_model_output` has no effect.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            variance_noise (`torch.FloatTensor`):
                Alternative to generating noise with `generator` by directly providing the noise for the variance
                itself. Useful for methods such as [`CycleDiffusion`].
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.

        Returns:
            [`~schedulers.scheduling_utils.RectifiedFlowSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.rf_scheduler.RectifiedFlowSchedulerOutput`] is returned,
                otherwise a tuple is returned where the first element is the sample tensor.
        """
        if self.num_inference_steps is None:
            raise ValueError(
                "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
            )

        if timestep.ndim == 0:
            # Global timestep
            current_index = (self.timesteps - timestep).abs().argmin()
            dt = self.delta_timesteps.gather(0, current_index.unsqueeze(0))
        else:
            # Timestep per token
            assert timestep.ndim == 2
            current_index = (
                (self.timesteps[:, None, None] - timestep[None]).abs().argmin(dim=0)
            )
            dt = self.delta_timesteps[current_index]
            # Special treatment for zero timestep tokens - set dt to 0 so prev_sample = sample
            dt = torch.where(timestep == 0.0, torch.zeros_like(dt), dt)[..., None]

        prev_sample = sample - dt * model_output

        if not return_dict:
            return (prev_sample,)

        return RectifiedFlowSchedulerOutput(prev_sample=prev_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        sigmas = timesteps
        sigmas = append_dims(sigmas, original_samples.ndim)
        alphas = 1 - sigmas
        noisy_samples = alphas * original_samples + sigmas * noise
        return noisy_samples