File size: 13,822 Bytes
d1765b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import spaces
from functools import lru_cache
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPProcessor, CLIPModel, pipeline
import random
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
import csv
from datetime import datetime
from openai import OpenAI

# ν•œκΈ€-μ˜μ–΄ λ²ˆμ—­κΈ° μ΄ˆκΈ°ν™”
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.set_float32_matmul_precision("highest")

MAX_SEED = np.iinfo(np.int32).max

# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)

system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
with open(system_prompt_t2v_path, "r") as f:
    system_prompt_t2v = f.read()

# Set model download directory within Hugging Face Spaces
model_path = "asset"

commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'

if not os.path.exists(model_path):
    snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)

# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)

def process_prompt(prompt):
    # ν•œκΈ€μ΄ ν¬ν•¨λ˜μ–΄ μžˆλŠ”μ§€ 확인
    if any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt):
        # ν•œκΈ€μ„ μ˜μ–΄λ‘œ λ²ˆμ—­
        translated = translator(prompt)[0]['translation_text']
        return translated
    return prompt

def compute_clip_embedding(text=None):
    inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
    outputs = clip_model.get_text_features(**inputs)
    embedding = outputs.detach().cpu().numpy().flatten().tolist()
    return embedding

def load_vae(vae_dir):
    vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
    vae_config_path = vae_dir / "config.json"
    with open(vae_config_path, "r") as f:
        vae_config = json.load(f)
    vae = CausalVideoAutoencoder.from_config(vae_config)
    vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
    vae.load_state_dict(vae_state_dict)
    return vae.to(device).to(torch.bfloat16)

def load_unet(unet_dir):
    unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
    unet_config_path = unet_dir / "config.json"
    transformer_config = Transformer3DModel.load_config(unet_config_path)
    transformer = Transformer3DModel.from_config(transformer_config)
    unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
    transformer.load_state_dict(unet_state_dict, strict=True)
    return transformer.to(device).to(torch.bfloat16)

def load_scheduler(scheduler_dir):
    scheduler_config_path = scheduler_dir / "scheduler_config.json"
    scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
    return RectifiedFlowScheduler.from_config(scheduler_config)

# Preset options for resolution and frame configuration
preset_options = [
    {"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
    {"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
    {"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
    {"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
    {"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
    {"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
    {"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
    {"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
    {"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
    {"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
    {"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
    {"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
    {"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
    {"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
    {"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]

def preset_changed(preset):
    if preset != "Custom":
        selected = next(item for item in preset_options if item["label"] == preset)
        return (
            selected["height"],
            selected["width"],
            selected["num_frames"],
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )
    else:
        return (
            None,
            None,
            None,
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
        )

# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")

pipeline = XoraVideoPipeline(
    transformer=unet,
    patchifier=patchifier,
    text_encoder=text_encoder,
    tokenizer=tokenizer,
    scheduler=scheduler,
    vae=vae,
).to(torch.device("cuda:0"))

def enhance_prompt_if_enabled(prompt, enhance_toggle):
    if not enhance_toggle:
        print("Enhance toggle is off, Prompt: ", prompt)
        return prompt

    messages = [
        {"role": "system", "content": system_prompt_t2v},
        {"role": "user", "content": prompt},
    ]

    try:
        response = client.chat.completions.create(
            model="gpt-4-mini",
            messages=messages,
            max_tokens=200,
        )
        print("Enhanced Prompt: ", response.choices[0].message.content.strip())
        return response.choices[0].message.content.strip()
    except Exception as e:
        print(f"Error: {e}")
        return prompt

@spaces.GPU(duration=90)
def generate_video_from_text_90(
    prompt="",
    enhance_prompt_toggle=False,
    negative_prompt="",
    frame_rate=25,
    seed=random.randint(0, MAX_SEED),
    num_inference_steps=30,
    guidance_scale=3.2,
    height=768,
    width=768,
    num_frames=60,
    progress=gr.Progress(),
):
    # ν”„λ‘¬ν”„νŠΈ μ „μ²˜λ¦¬ (ν•œκΈ€ -> μ˜μ–΄)
    prompt = process_prompt(prompt)
    negative_prompt = process_prompt(negative_prompt)

    if len(prompt.strip()) < 50:
        raise gr.Error(
            "Prompt must be at least 50 characters long. Please provide more details for the best results.",
            duration=5,
        )

    prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle)

    sample = {
        "prompt": prompt,
        "prompt_attention_mask": None,
        "negative_prompt": negative_prompt,
        "negative_prompt_attention_mask": None,
        "media_items": None,
    }

    generator = torch.Generator(device="cuda").manual_seed(seed)

    def gradio_progress_callback(self, step, timestep, kwargs):
        progress((step + 1) / num_inference_steps)

    try:
        with torch.no_grad():
            images = pipeline(
                num_inference_steps=num_inference_steps,
                num_images_per_prompt=1,
                guidance_scale=guidance_scale,
                generator=generator,
                output_type="pt",
                height=height,
                width=width,
                num_frames=num_frames,
                frame_rate=frame_rate,
                **sample,
                is_video=True,
                vae_per_channel_normalize=True,
                conditioning_method=ConditioningMethod.UNCONDITIONAL,
                mixed_precision=True,
                callback_on_step_end=gradio_progress_callback,
            ).images
    except Exception as e:
        raise gr.Error(
            f"An error occurred while generating the video. Please try again. Error: {e}",
            duration=5,
        )
    finally:
        torch.cuda.empty_cache()
        gc.collect()

    output_path = tempfile.mktemp(suffix=".mp4")
    video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
    video_np = (video_np * 255).astype(np.uint8)
    height, width = video_np.shape[1:3]
    out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
    for frame in video_np[..., ::-1]:
        out.write(frame)
    out.release()
    del images
    del video_np
    torch.cuda.empty_cache()
    return output_path

def create_advanced_options():
    with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
        seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
        inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
        guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
        
        height_slider = gr.Slider(
            label="4.4 Height",
            minimum=256,
            maximum=1024,
            step=64,
            value=768,
            visible=False,
        )
        width_slider = gr.Slider(
            label="4.5 Width",
            minimum=256,
            maximum=1024,
            step=64,
            value=768,
            visible=False,
        )
        num_frames_slider = gr.Slider(
            label="4.5 Number of Frames",
            minimum=1,
            maximum=500,
            step=1,
            value=60,
            visible=False,
        )

        return [
            seed,
            inference_steps,
            guidance_scale,
            height_slider,
            width_slider,
            num_frames_slider,
        ]

with gr.Blocks(theme=gr.themes.Soft()) as iface:

    with gr.Column():
        txt2vid_prompt = gr.Textbox(
            label="Step 1: Enter Your Prompt (ν•œκΈ€ λ˜λŠ” μ˜μ–΄)",
            placeholder="μƒμ„±ν•˜κ³  싢은 λΉ„λ””μ˜€λ₯Ό μ„€λͺ…ν•˜μ„Έμš” (μ΅œμ†Œ 50자)...",
            value="κΈ΄ κ°ˆμƒ‰ 머리와 밝은 ν”ΌλΆ€λ₯Ό 가진 여성이 κΈ΄ 금발 머리λ₯Ό 가진 λ‹€λ₯Έ 여성을 ν–₯ν•΄ λ―Έμ†Œ μ§“μŠ΅λ‹ˆλ‹€. κ°ˆμƒ‰ 머리 여성은 검은 μž¬ν‚·μ„ μž…κ³  있으며 였λ₯Έμͺ½ 뺨에 μž‘κ³  거의 λˆˆμ— 띄지 μ•ŠλŠ” 점이 μžˆμŠ΅λ‹ˆλ‹€. 카메라 액글은 κ°ˆμƒ‰ 머리 μ—¬μ„±μ˜ 얼꡴에 μ΄ˆμ μ„ 맞좘 ν΄λ‘œμ¦ˆμ—…μž…λ‹ˆλ‹€. μ‘°λͺ…은 λ”°λœ»ν•˜κ³  μžμ—°μŠ€λŸ¬μš°λ©°, μ•„λ§ˆλ„ μ§€λŠ” ν•΄μ—μ„œ λ‚˜μ˜€λŠ” 것 κ°™μ•„ μž₯면에 λΆ€λ“œλŸ¬μš΄ 빛을 λΉ„μΆ₯λ‹ˆλ‹€.",
            lines=5,
        )


        txt2vid_enhance_toggle = Toggle(
            label="Enhance Prompt",
            value=False,
            interactive=True,
        )

        txt2vid_negative_prompt = gr.Textbox(
            label="Step 2: Enter Negative Prompt",
            placeholder="λΉ„λ””μ˜€μ—μ„œ μ›ν•˜μ§€ μ•ŠλŠ” μš”μ†Œλ₯Ό μ„€λͺ…ν•˜μ„Έμš”...",
            value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly",
            lines=2,
        )

        txt2vid_preset = gr.Dropdown(
            choices=[p["label"] for p in preset_options],
            value="512x512, 160 frames",
            label="Step 3.1: Choose Resolution Preset",
        )

        txt2vid_frame_rate = gr.Slider(
            label="Step 3.2: Frame Rate",
            minimum=6,
            maximum=60,
            step=1,
            value=20,
        )

        txt2vid_advanced = create_advanced_options()
        txt2vid_generate = gr.Button(
            "Step 5: Generate Video",
            variant="primary",
            size="lg",
        )

        txt2vid_output = gr.Video(label="Generated Output")

    txt2vid_preset.change(
        fn=preset_changed,
        inputs=[txt2vid_preset],
        outputs=txt2vid_advanced[3:],
    )

    txt2vid_generate.click(
        fn=generate_video_from_text_90,
        inputs=[
            txt2vid_prompt,
            txt2vid_enhance_toggle,
            txt2vid_negative_prompt,
            txt2vid_frame_rate,
            *txt2vid_advanced,
        ],
        outputs=txt2vid_output,
        concurrency_limit=1,
        concurrency_id="generate_video",
        queue=True,
    )

iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False)
# ===== Application Startup at 2024-12-20 01:30:34 =====