Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,822 Bytes
d1765b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import spaces
from functools import lru_cache
import gradio as gr
from gradio_toggle import Toggle
import torch
from huggingface_hub import snapshot_download
from transformers import CLIPProcessor, CLIPModel, pipeline
import random
from xora.models.autoencoders.causal_video_autoencoder import CausalVideoAutoencoder
from xora.models.transformers.transformer3d import Transformer3DModel
from xora.models.transformers.symmetric_patchifier import SymmetricPatchifier
from xora.schedulers.rf import RectifiedFlowScheduler
from xora.pipelines.pipeline_xora_video import XoraVideoPipeline
from transformers import T5EncoderModel, T5Tokenizer
from xora.utils.conditioning_method import ConditioningMethod
from pathlib import Path
import safetensors.torch
import json
import numpy as np
import cv2
from PIL import Image
import tempfile
import os
import gc
import csv
from datetime import datetime
from openai import OpenAI
# νκΈ-μμ΄ λ²μκΈ° μ΄κΈ°ν
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = False
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
torch.backends.cudnn.allow_tf32 = False
torch.backends.cudnn.deterministic = False
torch.backends.cuda.preferred_blas_library="cublas"
torch.set_float32_matmul_precision("highest")
MAX_SEED = np.iinfo(np.int32).max
# Load Hugging Face token if needed
hf_token = os.getenv("HF_TOKEN")
openai_api_key = os.getenv("OPENAI_API_KEY")
client = OpenAI(api_key=openai_api_key)
system_prompt_t2v_path = "assets/system_prompt_t2v.txt"
with open(system_prompt_t2v_path, "r") as f:
system_prompt_t2v = f.read()
# Set model download directory within Hugging Face Spaces
model_path = "asset"
commit_hash='c7c8ad4c2ddba847b94e8bfaefbd30bd8669fafc'
if not os.path.exists(model_path):
snapshot_download("Lightricks/LTX-Video", revision=commit_hash, local_dir=model_path, repo_type="model", token=hf_token)
# Global variables to load components
vae_dir = Path(model_path) / "vae"
unet_dir = Path(model_path) / "unet"
scheduler_dir = Path(model_path) / "scheduler"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path).to(torch.device("cuda:0"))
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32", cache_dir=model_path)
def process_prompt(prompt):
# νκΈμ΄ ν¬ν¨λμ΄ μλμ§ νμΈ
if any(ord('κ°') <= ord(char) <= ord('ν£') for char in prompt):
# νκΈμ μμ΄λ‘ λ²μ
translated = translator(prompt)[0]['translation_text']
return translated
return prompt
def compute_clip_embedding(text=None):
inputs = clip_processor(text=text, return_tensors="pt", padding=True).to(device)
outputs = clip_model.get_text_features(**inputs)
embedding = outputs.detach().cpu().numpy().flatten().tolist()
return embedding
def load_vae(vae_dir):
vae_ckpt_path = vae_dir / "vae_diffusion_pytorch_model.safetensors"
vae_config_path = vae_dir / "config.json"
with open(vae_config_path, "r") as f:
vae_config = json.load(f)
vae = CausalVideoAutoencoder.from_config(vae_config)
vae_state_dict = safetensors.torch.load_file(vae_ckpt_path)
vae.load_state_dict(vae_state_dict)
return vae.to(device).to(torch.bfloat16)
def load_unet(unet_dir):
unet_ckpt_path = unet_dir / "unet_diffusion_pytorch_model.safetensors"
unet_config_path = unet_dir / "config.json"
transformer_config = Transformer3DModel.load_config(unet_config_path)
transformer = Transformer3DModel.from_config(transformer_config)
unet_state_dict = safetensors.torch.load_file(unet_ckpt_path)
transformer.load_state_dict(unet_state_dict, strict=True)
return transformer.to(device).to(torch.bfloat16)
def load_scheduler(scheduler_dir):
scheduler_config_path = scheduler_dir / "scheduler_config.json"
scheduler_config = RectifiedFlowScheduler.load_config(scheduler_config_path)
return RectifiedFlowScheduler.from_config(scheduler_config)
# Preset options for resolution and frame configuration
preset_options = [
{"label": "1216x704, 41 frames", "width": 1216, "height": 704, "num_frames": 41},
{"label": "1088x704, 49 frames", "width": 1088, "height": 704, "num_frames": 49},
{"label": "1056x640, 57 frames", "width": 1056, "height": 640, "num_frames": 57},
{"label": "448x448, 100 frames", "width": 448, "height": 448, "num_frames": 100},
{"label": "448x448, 200 frames", "width": 448, "height": 448, "num_frames": 200},
{"label": "448x448, 300 frames", "width": 448, "height": 448, "num_frames": 300},
{"label": "640x640, 80 frames", "width": 640, "height": 640, "num_frames": 80},
{"label": "640x640, 120 frames", "width": 640, "height": 640, "num_frames": 120},
{"label": "768x768, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "768x768, 90 frames", "width": 768, "height": 768, "num_frames": 90},
{"label": "720x720, 64 frames", "width": 768, "height": 768, "num_frames": 64},
{"label": "720x720, 100 frames", "width": 768, "height": 768, "num_frames": 100},
{"label": "768x512, 97 frames", "width": 768, "height": 512, "num_frames": 97},
{"label": "512x512, 160 frames", "width": 512, "height": 512, "num_frames": 160},
{"label": "512x512, 200 frames", "width": 512, "height": 512, "num_frames": 200},
]
def preset_changed(preset):
if preset != "Custom":
selected = next(item for item in preset_options if item["label"] == preset)
return (
selected["height"],
selected["width"],
selected["num_frames"],
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
)
else:
return (
None,
None,
None,
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
)
# Load models
vae = load_vae(vae_dir)
unet = load_unet(unet_dir)
scheduler = load_scheduler(scheduler_dir)
patchifier = SymmetricPatchifier(patch_size=1)
text_encoder = T5EncoderModel.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="text_encoder").to(torch.device("cuda:0"))
tokenizer = T5Tokenizer.from_pretrained("PixArt-alpha/PixArt-XL-2-1024-MS", subfolder="tokenizer")
pipeline = XoraVideoPipeline(
transformer=unet,
patchifier=patchifier,
text_encoder=text_encoder,
tokenizer=tokenizer,
scheduler=scheduler,
vae=vae,
).to(torch.device("cuda:0"))
def enhance_prompt_if_enabled(prompt, enhance_toggle):
if not enhance_toggle:
print("Enhance toggle is off, Prompt: ", prompt)
return prompt
messages = [
{"role": "system", "content": system_prompt_t2v},
{"role": "user", "content": prompt},
]
try:
response = client.chat.completions.create(
model="gpt-4-mini",
messages=messages,
max_tokens=200,
)
print("Enhanced Prompt: ", response.choices[0].message.content.strip())
return response.choices[0].message.content.strip()
except Exception as e:
print(f"Error: {e}")
return prompt
@spaces.GPU(duration=90)
def generate_video_from_text_90(
prompt="",
enhance_prompt_toggle=False,
negative_prompt="",
frame_rate=25,
seed=random.randint(0, MAX_SEED),
num_inference_steps=30,
guidance_scale=3.2,
height=768,
width=768,
num_frames=60,
progress=gr.Progress(),
):
# ν둬ννΈ μ μ²λ¦¬ (νκΈ -> μμ΄)
prompt = process_prompt(prompt)
negative_prompt = process_prompt(negative_prompt)
if len(prompt.strip()) < 50:
raise gr.Error(
"Prompt must be at least 50 characters long. Please provide more details for the best results.",
duration=5,
)
prompt = enhance_prompt_if_enabled(prompt, enhance_prompt_toggle)
sample = {
"prompt": prompt,
"prompt_attention_mask": None,
"negative_prompt": negative_prompt,
"negative_prompt_attention_mask": None,
"media_items": None,
}
generator = torch.Generator(device="cuda").manual_seed(seed)
def gradio_progress_callback(self, step, timestep, kwargs):
progress((step + 1) / num_inference_steps)
try:
with torch.no_grad():
images = pipeline(
num_inference_steps=num_inference_steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
generator=generator,
output_type="pt",
height=height,
width=width,
num_frames=num_frames,
frame_rate=frame_rate,
**sample,
is_video=True,
vae_per_channel_normalize=True,
conditioning_method=ConditioningMethod.UNCONDITIONAL,
mixed_precision=True,
callback_on_step_end=gradio_progress_callback,
).images
except Exception as e:
raise gr.Error(
f"An error occurred while generating the video. Please try again. Error: {e}",
duration=5,
)
finally:
torch.cuda.empty_cache()
gc.collect()
output_path = tempfile.mktemp(suffix=".mp4")
video_np = images.squeeze(0).permute(1, 2, 3, 0).cpu().float().numpy()
video_np = (video_np * 255).astype(np.uint8)
height, width = video_np.shape[1:3]
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), frame_rate, (width, height))
for frame in video_np[..., ::-1]:
out.write(frame)
out.release()
del images
del video_np
torch.cuda.empty_cache()
return output_path
def create_advanced_options():
with gr.Accordion("Step 4: Advanced Options (Optional)", open=False):
seed = gr.Slider(label="4.1 Seed", minimum=0, maximum=1000000, step=1, value=646373)
inference_steps = gr.Slider(label="4.2 Inference Steps", minimum=5, maximum=150, step=5, value=40)
guidance_scale = gr.Slider(label="4.3 Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=4.2)
height_slider = gr.Slider(
label="4.4 Height",
minimum=256,
maximum=1024,
step=64,
value=768,
visible=False,
)
width_slider = gr.Slider(
label="4.5 Width",
minimum=256,
maximum=1024,
step=64,
value=768,
visible=False,
)
num_frames_slider = gr.Slider(
label="4.5 Number of Frames",
minimum=1,
maximum=500,
step=1,
value=60,
visible=False,
)
return [
seed,
inference_steps,
guidance_scale,
height_slider,
width_slider,
num_frames_slider,
]
with gr.Blocks(theme=gr.themes.Soft()) as iface:
with gr.Column():
txt2vid_prompt = gr.Textbox(
label="Step 1: Enter Your Prompt (νκΈ λλ μμ΄)",
placeholder="μμ±νκ³ μΆμ λΉλμ€λ₯Ό μ€λͺ
νμΈμ (μ΅μ 50μ)...",
value="κΈ΄ κ°μ 머리μ λ°μ νΌλΆλ₯Ό κ°μ§ μ¬μ±μ΄ κΈ΄ κΈλ° 머리λ₯Ό κ°μ§ λ€λ₯Έ μ¬μ±μ ν₯ν΄ λ―Έμ μ§μ΅λλ€. κ°μ 머리 μ¬μ±μ κ²μ μ¬ν·μ μ
κ³ μμΌλ©° μ€λ₯Έμͺ½ λΊ¨μ μκ³ κ±°μ λμ λμ§ μλ μ μ΄ μμ΅λλ€. μΉ΄λ©λΌ μ΅κΈμ κ°μ 머리 μ¬μ±μ μΌκ΅΄μ μ΄μ μ λ§μΆ ν΄λ‘μ¦μ
μ
λλ€. μ‘°λͺ
μ λ°λ»νκ³ μμ°μ€λ¬μ°λ©°, μλ§λ μ§λ ν΄μμ λμ€λ κ² κ°μ μ₯λ©΄μ λΆλλ¬μ΄ λΉμ λΉμΆ₯λλ€.",
lines=5,
)
txt2vid_enhance_toggle = Toggle(
label="Enhance Prompt",
value=False,
interactive=True,
)
txt2vid_negative_prompt = gr.Textbox(
label="Step 2: Enter Negative Prompt",
placeholder="λΉλμ€μμ μνμ§ μλ μμλ₯Ό μ€λͺ
νμΈμ...",
value="low quality, worst quality, deformed, distorted, damaged, motion blur, motion artifacts, fused fingers, incorrect anatomy, strange hands, ugly",
lines=2,
)
txt2vid_preset = gr.Dropdown(
choices=[p["label"] for p in preset_options],
value="512x512, 160 frames",
label="Step 3.1: Choose Resolution Preset",
)
txt2vid_frame_rate = gr.Slider(
label="Step 3.2: Frame Rate",
minimum=6,
maximum=60,
step=1,
value=20,
)
txt2vid_advanced = create_advanced_options()
txt2vid_generate = gr.Button(
"Step 5: Generate Video",
variant="primary",
size="lg",
)
txt2vid_output = gr.Video(label="Generated Output")
txt2vid_preset.change(
fn=preset_changed,
inputs=[txt2vid_preset],
outputs=txt2vid_advanced[3:],
)
txt2vid_generate.click(
fn=generate_video_from_text_90,
inputs=[
txt2vid_prompt,
txt2vid_enhance_toggle,
txt2vid_negative_prompt,
txt2vid_frame_rate,
*txt2vid_advanced,
],
outputs=txt2vid_output,
concurrency_limit=1,
concurrency_id="generate_video",
queue=True,
)
iface.queue(max_size=64, default_concurrency_limit=1, api_open=False).launch(share=True, show_api=False)
# ===== Application Startup at 2024-12-20 01:30:34 ===== |