QinOwen
commited on
Commit
·
1759457
1
Parent(s):
ff3cdde
debug-noise
Browse files
VADER-VideoCrafter/lvdm/models/samplers/ddim.py
CHANGED
@@ -5,18 +5,9 @@ import torch
|
|
5 |
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
|
6 |
from lvdm.common import noise_like
|
7 |
import random
|
8 |
-
import os
|
9 |
# import ipdb
|
10 |
# st = ipdb.set_trace
|
11 |
|
12 |
-
def seed_everything_self(TORCH_SEED):
|
13 |
-
random.seed(TORCH_SEED)
|
14 |
-
os.environ['PYTHONHASHSEED'] = str(TORCH_SEED)
|
15 |
-
np.random.seed(TORCH_SEED)
|
16 |
-
torch.manual_seed(TORCH_SEED)
|
17 |
-
torch.cuda.manual_seed_all(TORCH_SEED)
|
18 |
-
torch.backends.cudnn.deterministic = True
|
19 |
-
torch.backends.cudnn.benchmark = False
|
20 |
|
21 |
class DDIMSampler(object):
|
22 |
def __init__(self, model, schedule="linear", **kwargs):
|
@@ -97,7 +88,6 @@ class DDIMSampler(object):
|
|
97 |
log_every_t=100,
|
98 |
unconditional_guidance_scale=1.,
|
99 |
unconditional_conditioning=None,
|
100 |
-
seed=0,
|
101 |
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
102 |
**kwargs
|
103 |
):
|
@@ -143,7 +133,6 @@ class DDIMSampler(object):
|
|
143 |
unconditional_guidance_scale=unconditional_guidance_scale,
|
144 |
unconditional_conditioning=unconditional_conditioning,
|
145 |
verbose=verbose,
|
146 |
-
seed=seed,
|
147 |
**kwargs)
|
148 |
return samples, intermediates
|
149 |
|
@@ -154,11 +143,10 @@ class DDIMSampler(object):
|
|
154 |
mask=None, x0=None, img_callback=None, log_every_t=100,
|
155 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
156 |
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
|
157 |
-
cond_tau=1., target_size=None, start_timesteps=None,
|
158 |
**kwargs):
|
159 |
device = self.model.betas.device
|
160 |
# print('ddim device', device)
|
161 |
-
seed_everything_self(seed)
|
162 |
b = shape[0]
|
163 |
if x_T is None:
|
164 |
img = torch.randn(shape, device=device)
|
@@ -168,8 +156,8 @@ class DDIMSampler(object):
|
|
168 |
print("x_T: ", x_T)
|
169 |
print("shape: ", shape)
|
170 |
print('random seed debug: ', torch.randn(100, device=device).sum())
|
171 |
-
print("Debug initial
|
172 |
-
print("Debug initial
|
173 |
print("noise device: ", img.device)
|
174 |
|
175 |
if timesteps is None:
|
|
|
5 |
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps
|
6 |
from lvdm.common import noise_like
|
7 |
import random
|
|
|
8 |
# import ipdb
|
9 |
# st = ipdb.set_trace
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
class DDIMSampler(object):
|
13 |
def __init__(self, model, schedule="linear", **kwargs):
|
|
|
88 |
log_every_t=100,
|
89 |
unconditional_guidance_scale=1.,
|
90 |
unconditional_conditioning=None,
|
|
|
91 |
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
92 |
**kwargs
|
93 |
):
|
|
|
133 |
unconditional_guidance_scale=unconditional_guidance_scale,
|
134 |
unconditional_conditioning=unconditional_conditioning,
|
135 |
verbose=verbose,
|
|
|
136 |
**kwargs)
|
137 |
return samples, intermediates
|
138 |
|
|
|
143 |
mask=None, x0=None, img_callback=None, log_every_t=100,
|
144 |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
145 |
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,
|
146 |
+
cond_tau=1., target_size=None, start_timesteps=None,
|
147 |
**kwargs):
|
148 |
device = self.model.betas.device
|
149 |
# print('ddim device', device)
|
|
|
150 |
b = shape[0]
|
151 |
if x_T is None:
|
152 |
img = torch.randn(shape, device=device)
|
|
|
156 |
print("x_T: ", x_T)
|
157 |
print("shape: ", shape)
|
158 |
print('random seed debug: ', torch.randn(100, device=device).sum())
|
159 |
+
print("Debug initial noise: ", torch.randn(shape, device=device).sum().item())
|
160 |
+
print("Debug initial noise: ", torch.randn(shape, device=device).sum().item())
|
161 |
print("noise device: ", img.device)
|
162 |
|
163 |
if timesteps is None:
|
VADER-VideoCrafter/scripts/main/funcs.py
CHANGED
@@ -14,7 +14,7 @@ from lvdm.models.samplers.ddim import DDIMSampler
|
|
14 |
# st = ipdb.set_trace
|
15 |
|
16 |
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
17 |
-
cfg_scale=1.0, temporal_cfg_scale=None, backprop_mode=None, decode_frame='-1',
|
18 |
ddim_sampler = DDIMSampler(model)
|
19 |
if backprop_mode is not None: # it is for training now, backprop_mode != None also means vader training mode
|
20 |
ddim_sampler.backprop_mode = backprop_mode
|
@@ -64,7 +64,6 @@ def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, dd
|
|
64 |
temporal_length=noise_shape[2],
|
65 |
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
66 |
x_T=x_T,
|
67 |
-
seed=seed,
|
68 |
**kwargs
|
69 |
)
|
70 |
|
|
|
14 |
# st = ipdb.set_trace
|
15 |
|
16 |
def batch_ddim_sampling(model, cond, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1.0,\
|
17 |
+
cfg_scale=1.0, temporal_cfg_scale=None, backprop_mode=None, decode_frame='-1', **kwargs):
|
18 |
ddim_sampler = DDIMSampler(model)
|
19 |
if backprop_mode is not None: # it is for training now, backprop_mode != None also means vader training mode
|
20 |
ddim_sampler.backprop_mode = backprop_mode
|
|
|
64 |
temporal_length=noise_shape[2],
|
65 |
conditional_guidance_scale_temporal=temporal_cfg_scale,
|
66 |
x_T=x_T,
|
|
|
67 |
**kwargs
|
68 |
)
|
69 |
|
VADER-VideoCrafter/scripts/main/train_t2v_lora.py
CHANGED
@@ -655,10 +655,10 @@ def run_training(args, model, **kwargs):
|
|
655 |
seed_everything_self(args.seed)
|
656 |
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
|
657 |
batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
|
658 |
-
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame,
|
659 |
else:
|
660 |
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
|
661 |
-
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame,
|
662 |
|
663 |
print("batch_samples dtype: ", batch_samples.dtype)
|
664 |
print("batch_samples device: ", batch_samples.device)
|
|
|
655 |
seed_everything_self(args.seed)
|
656 |
if isinstance(peft_model, torch.nn.parallel.DistributedDataParallel):
|
657 |
batch_samples = batch_ddim_sampling(peft_model.module, cond, noise_shape, args.n_samples, \
|
658 |
+
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
|
659 |
else:
|
660 |
batch_samples = batch_ddim_sampling(peft_model, cond, noise_shape, args.n_samples, \
|
661 |
+
args.ddim_steps, args.ddim_eta, args.unconditional_guidance_scale, None, decode_frame=args.decode_frame, **kwargs)
|
662 |
|
663 |
print("batch_samples dtype: ", batch_samples.dtype)
|
664 |
print("batch_samples device: ", batch_samples.device)
|