Spaces:
Paused
Paused
import os | |
import math | |
import wandb | |
import random | |
import time | |
import logging | |
import inspect | |
import argparse | |
import datetime | |
import numpy as np | |
from pathlib import Path | |
from tqdm.auto import tqdm | |
from einops import rearrange, repeat | |
from omegaconf import OmegaConf | |
from typing import Dict, Optional, Tuple | |
import torch | |
import torch.nn.functional as F | |
import diffusers | |
from diffusers import AutoencoderKL, DDIMScheduler | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version | |
from diffusers.utils.import_utils import is_xformers_available | |
from diffusers.training_utils import EMAModel | |
import transformers | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from accelerate import Accelerator, DistributedDataParallelKwargs, InitProcessGroupKwargs | |
from accelerate.logging import get_logger | |
from accelerate.utils import set_seed | |
from consisti2v.data.dataset import WebVid10M, Pexels, JointDataset | |
from consisti2v.models.videoldm_unet import VideoLDMUNet3DConditionModel | |
from consisti2v.pipelines.pipeline_conditional_animation import ConditionalAnimationPipeline | |
from consisti2v.utils.util import save_videos_grid | |
logger = get_logger(__name__, log_level="INFO") | |
def main( | |
name: str, | |
use_wandb: bool, | |
is_image: bool, | |
output_dir: str, | |
pretrained_model_path: str, | |
train_data: Dict, | |
validation_data: Dict, | |
cfg_random_null_text_ratio: float = 0.1, | |
cfg_random_null_img_ratio: float = 0.0, | |
resume_from_checkpoint: Optional[str] = None, | |
unet_additional_kwargs: Dict = {}, | |
use_ema: bool = False, | |
ema_decay: float = 0.9999, | |
noise_scheduler_kwargs = None, | |
max_train_epoch: int = -1, | |
max_train_steps: int = 100, | |
validation_steps: int = 100, | |
learning_rate: float = 3e-5, | |
scale_lr: bool = False, | |
lr_warmup_steps: int = 0, | |
lr_scheduler: str = "constant", | |
trainable_modules: Tuple[str] = (None, ), | |
num_workers: int = 32, | |
train_batch_size: int = 1, | |
adam_beta1: float = 0.9, | |
adam_beta2: float = 0.999, | |
adam_weight_decay: float = 1e-2, | |
adam_epsilon: float = 1e-08, | |
max_grad_norm: float = 1.0, | |
gradient_accumulation_steps: int = 1, | |
gradient_checkpointing: bool = False, | |
checkpointing_epochs: int = 5, | |
checkpointing_steps: int = -1, | |
mixed_precision: Optional[str] = "fp16", | |
enable_xformers_memory_efficient_attention: bool = True, | |
seed: Optional[int] = 42, | |
is_debug: bool = False, | |
): | |
check_min_version("0.10.0.dev0") | |
*_, config = inspect.getargvalues(inspect.currentframe()) | |
config = {k: v for k, v in config.items() if k != 'config' and k != '_'} | |
ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True if not is_image else False) | |
init_kwargs = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=3600)) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
mixed_precision=mixed_precision, | |
kwargs_handlers=[ddp_kwargs, init_kwargs], | |
) | |
if seed is not None: | |
set_seed(seed) | |
# Logging folder | |
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S") | |
output_dir = os.path.join(output_dir, folder_name) | |
if is_debug and os.path.exists(output_dir): | |
os.system(f"rm -rf {output_dir}") | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
if accelerator.is_main_process and (not is_debug) and use_wandb: | |
project_name = "text_image_to_video" if not is_image else "image_finetune" | |
wandb.init(project=project_name, name=folder_name, config=config) | |
accelerator.wait_for_everyone() | |
# Handle the output folder creation | |
if accelerator.is_main_process: | |
os.makedirs(output_dir, exist_ok=True) | |
os.makedirs(f"{output_dir}/samples", exist_ok=True) | |
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True) | |
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True) | |
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml')) | |
# TODO: change all datasets to fps+duration in the future | |
if train_data.dataset == "pexels": | |
train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps | |
elif train_data.dataset == "joint": | |
if train_data.sample_duration is not None: | |
train_data.sample_n_frames = train_data.sample_duration * train_data.sample_fps | |
# Load scheduler, tokenizer and models. | |
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(noise_scheduler_kwargs)) | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
unet = VideoLDMUNet3DConditionModel.from_pretrained( | |
pretrained_model_path, | |
subfolder="unet", | |
variant=unet_additional_kwargs['variant'], | |
use_temporal=True if not is_image else False, | |
temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'], | |
augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'], | |
n_frames=train_data.sample_n_frames if not is_image else 2, | |
n_temp_heads=unet_additional_kwargs['n_temp_heads'], | |
first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'], | |
use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'], | |
use_safetensors=True | |
) | |
# Freeze vae and text_encoder | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
unet.train() | |
if use_ema: | |
ema_unet = VideoLDMUNet3DConditionModel.from_pretrained( | |
pretrained_model_path, | |
subfolder="unet", | |
variant=unet_additional_kwargs['variant'], | |
use_temporal=True if not is_image else False, | |
temp_pos_embedding=unet_additional_kwargs['temp_pos_embedding'], | |
augment_temporal_attention=unet_additional_kwargs['augment_temporal_attention'], | |
n_frames=train_data.sample_n_frames if not is_image else 2, | |
n_temp_heads=unet_additional_kwargs['n_temp_heads'], | |
first_frame_condition_mode=unet_additional_kwargs['first_frame_condition_mode'], | |
use_frame_stride_condition=unet_additional_kwargs['use_frame_stride_condition'], | |
use_safetensors=True | |
) | |
ema_unet = EMAModel(ema_unet.parameters(), decay=ema_decay, model_cls=VideoLDMUNet3DConditionModel, model_config=ema_unet.config) | |
# Set unet trainable parameters | |
train_all_parameters = False | |
for trainable_module_name in trainable_modules: | |
if trainable_module_name == 'all': | |
unet.requires_grad_(True) | |
train_all_parameters = True | |
break | |
if not train_all_parameters: | |
unet.requires_grad_(False) | |
for name, param in unet.named_parameters(): | |
for trainable_module_name in trainable_modules: | |
if trainable_module_name in name: | |
param.requires_grad = True | |
break | |
# Enable xformers | |
if enable_xformers_memory_efficient_attention and int(torch.__version__.split(".")[0]) < 2: | |
if is_xformers_available(): | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
def save_model_hook(models, weights, output_dir): | |
if accelerator.is_main_process: | |
if use_ema: | |
ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) | |
for i, model in enumerate(models): | |
model.save_pretrained(os.path.join(output_dir, "unet")) | |
# make sure to pop weight so that corresponding model is not saved again | |
weights.pop() | |
def load_model_hook(models, input_dir): | |
if use_ema: | |
load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), VideoLDMUNet3DConditionModel) | |
ema_unet.load_state_dict(load_model.state_dict()) | |
ema_unet.to(accelerator.device) | |
del load_model | |
for i in range(len(models)): | |
# pop models so that they are not loaded again | |
model = models.pop() | |
# load diffusers style into model | |
load_model = VideoLDMUNet3DConditionModel.from_pretrained(input_dir, subfolder="unet") | |
model.register_to_config(**load_model.config) | |
model.load_state_dict(load_model.state_dict()) | |
del load_model | |
accelerator.register_save_state_pre_hook(save_model_hook) | |
accelerator.register_load_state_pre_hook(load_model_hook) | |
# Enable gradient checkpointing | |
if gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
if scale_lr: | |
learning_rate = (learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes) | |
trainable_params = list(filter(lambda p: p.requires_grad, unet.parameters())) | |
optimizer = torch.optim.AdamW( | |
trainable_params, | |
lr=learning_rate, | |
betas=(adam_beta1, adam_beta2), | |
weight_decay=adam_weight_decay, | |
eps=adam_epsilon, | |
) | |
logger.info(f"trainable params number: {len(trainable_params)}") | |
logger.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M") | |
# Get the training dataset | |
if train_data['dataset'] == "webvid": | |
train_dataset = WebVid10M(**train_data, is_image=is_image) | |
elif train_data['dataset'] == "pexels": | |
train_dataset = Pexels(**train_data, is_image=is_image) | |
elif train_data['dataset'] == "joint": | |
train_dataset = JointDataset(**train_data, is_image=is_image) | |
else: | |
raise ValueError(f"Unknown dataset {train_data['dataset']}") | |
# DataLoaders creation: | |
train_dataloader = torch.utils.data.DataLoader( | |
train_dataset, | |
shuffle=True, | |
batch_size=train_batch_size, | |
num_workers=num_workers, | |
pin_memory=True, | |
) | |
# Get the training iteration | |
if max_train_steps == -1: | |
assert max_train_epoch != -1 | |
max_train_steps = max_train_epoch * len(train_dataloader) | |
if checkpointing_steps == -1: | |
assert checkpointing_epochs != -1 | |
checkpointing_steps = checkpointing_epochs * len(train_dataloader) | |
# Scheduler | |
lr_scheduler = get_scheduler( | |
lr_scheduler, | |
optimizer=optimizer, | |
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps, | |
num_training_steps=max_train_steps * gradient_accumulation_steps, | |
) | |
# Validation pipeline | |
validation_pipeline = ConditionalAnimationPipeline( | |
unet=unet, vae=vae, tokenizer=tokenizer, text_encoder=text_encoder, scheduler=noise_scheduler, | |
) | |
validation_pipeline.enable_vae_slicing() | |
# Prepare everything with our `accelerator`. | |
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
unet, optimizer, train_dataloader, lr_scheduler | |
) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
if use_ema: | |
ema_unet.to(accelerator.device) | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps) | |
# Afterwards we recalculate our number of training epochs | |
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch) | |
# Train! | |
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(train_dataset)}") | |
logger.info(f" Num Epochs = {num_train_epochs}") | |
logger.info(f" Instantaneous batch size per device = {train_batch_size}") | |
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}") | |
logger.info(f" Total optimization steps = {max_train_steps}") | |
global_step = 0 | |
first_epoch = 0 | |
# Load pretrained unet weights | |
if resume_from_checkpoint is not None: | |
logger.info(f"Resuming from checkpoint: {resume_from_checkpoint}") | |
accelerator.load_state(resume_from_checkpoint) | |
global_step = int(resume_from_checkpoint.split("-")[-1]) | |
initial_global_step = global_step | |
first_epoch = global_step // num_update_steps_per_epoch | |
logger.info(f"global_step: {global_step}") | |
logger.info(f"first_epoch: {first_epoch}") | |
else: | |
initial_global_step = 0 | |
# Only show the progress bar once on each machine. | |
progress_bar = tqdm(range(0, max_train_steps), initial=initial_global_step, desc="Steps", disable=not accelerator.is_main_process) | |
for epoch in range(first_epoch, num_train_epochs): | |
train_loss = 0.0 | |
train_grad_norm = 0.0 | |
data_loading_time = 0.0 | |
prepare_everything_time = 0.0 | |
network_forward_time = 0.0 | |
network_backward_time = 0.0 | |
t0 = time.time() | |
for step, batch in enumerate(train_dataloader): | |
t1 = time.time() | |
if cfg_random_null_text_ratio > 0.0: | |
batch['text'] = [name if random.random() > cfg_random_null_text_ratio else "" for name in batch['text']] | |
# Data batch sanity check | |
if accelerator.is_main_process and epoch == first_epoch and step == 0: | |
pixel_values, texts = batch['pixel_values'].cpu(), batch['text'] | |
pixel_values = rearrange(pixel_values, "b f c h w -> b c f h w") | |
for idx, (pixel_value, text) in enumerate(zip(pixel_values, texts)): | |
pixel_value = pixel_value[None, ...] | |
save_videos_grid(pixel_value, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'no_text-{idx}'}.gif", rescale=True) | |
### >>>> Training >>>> ### | |
with accelerator.accumulate(unet): | |
# Convert videos to latent space | |
pixel_values = batch["pixel_values"].to(weight_dtype) | |
video_length = pixel_values.shape[1] | |
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") | |
latents = vae.encode(pixel_values).latent_dist | |
latents = latents.sample() | |
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) | |
latents = latents * vae.config.scaling_factor | |
if unet_additional_kwargs["first_frame_condition_mode"] != "none": | |
# Get first frame latents | |
first_frame_latents = latents[:, :, 0:1, :, :] | |
# Sample noise that we'll add to the latents | |
if unet_additional_kwargs['noise_sampling_method'] == 'vanilla': | |
noise = torch.randn_like(latents) | |
elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_mixed': | |
noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2 | |
shared_noise = torch.randn_like(latents[:, :, 0:1, :, :]) * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) | |
ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared)) | |
noise = shared_noise + ind_noise | |
elif unet_additional_kwargs['noise_sampling_method'] == 'pyoco_progressive': | |
noise_alpha_squared = float(unet_additional_kwargs['noise_alpha']) ** 2 | |
noise = torch.randn_like(latents) | |
ind_noise = torch.randn_like(latents) * math.sqrt(1 / (1 + noise_alpha_squared)) | |
for i in range(1, noise.shape[2]): | |
noise[:, :, i, :, :] = noise[:, :, i - 1, :, :] * math.sqrt((noise_alpha_squared) / (1 + noise_alpha_squared)) + ind_noise[:, :, i, :, :] | |
else: | |
raise ValueError(f"Unknown noise sampling method {unet_additional_kwargs['noise_sampling_method']}") | |
bsz = latents.shape[0] | |
# Sample a random timestep for each video | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
timesteps = timesteps.long() | |
# Add noise to the latents according to the noise magnitude at each timestep | |
# (this is the forward diffusion process) | |
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
if cfg_random_null_img_ratio > 0.0: | |
for i in range(first_frame_latents.shape[0]): | |
if random.random() <= cfg_random_null_img_ratio: | |
first_frame_latents[i, :, :, :, :] = noisy_latents[i, :, 0:1, :, :] | |
# Remove the first noisy latent from the latents if we're conditioning on the first frame | |
if unet_additional_kwargs["first_frame_condition_mode"] != "none": | |
noisy_latents = noisy_latents[:, :, 1:, :, :] | |
# Get the text embedding for conditioning | |
prompt_ids = tokenizer( | |
batch['text'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
).input_ids.to(latents.device) | |
encoder_hidden_states = text_encoder(prompt_ids)[0] | |
# Get the target for loss depending on the prediction type | |
if noise_scheduler.config.prediction_type == "epsilon": | |
target = noise | |
elif noise_scheduler.config.prediction_type == "v_prediction": | |
target = noise_scheduler.get_velocity(latents, noise, timesteps) | |
else: | |
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") | |
timesteps = repeat(timesteps, "b -> b f", f=video_length) | |
timesteps = rearrange(timesteps, "b f -> (b f)") | |
frame_stride = None | |
if unet_additional_kwargs["use_frame_stride_condition"]: | |
frame_stride = batch['stride'].to(latents.device) | |
frame_stride = frame_stride.long() | |
frame_stride = repeat(frame_stride, "b -> b f", f=video_length) | |
frame_stride = rearrange(frame_stride, "b f -> (b f)") | |
t2 = time.time() | |
# Predict the noise residual and compute loss | |
if unet_additional_kwargs["first_frame_condition_mode"] != "none": | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states, first_frame_latents=first_frame_latents, frame_stride=frame_stride).sample | |
loss = F.mse_loss(model_pred.float(), target.float()[:, :, 1:, :, :], reduction="mean") | |
else: | |
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample | |
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") | |
t3 = time.time() | |
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean() | |
train_loss += avg_loss.item() / gradient_accumulation_steps | |
# Backpropagate | |
accelerator.backward(loss) | |
if accelerator.sync_gradients: | |
grad_norm = accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm) | |
avg_grad_norm = accelerator.gather(grad_norm.repeat(train_batch_size)).mean() | |
train_grad_norm += avg_grad_norm.item() / gradient_accumulation_steps | |
optimizer.step() | |
lr_scheduler.step() | |
optimizer.zero_grad() | |
t4 = time.time() | |
data_loading_time += (t1 - t0) / gradient_accumulation_steps | |
prepare_everything_time += (t2 - t1) / gradient_accumulation_steps | |
network_forward_time += (t3 - t2) / gradient_accumulation_steps | |
network_backward_time += (t4 - t3) / gradient_accumulation_steps | |
t0 = time.time() | |
### <<<< Training <<<< ### | |
# Checks if the accelerator has performed an optimization step behind the scenes | |
if accelerator.sync_gradients: | |
if use_ema: | |
ema_unet.step(unet.parameters()) | |
progress_bar.update(1) | |
global_step += 1 | |
# Wandb logging | |
if accelerator.is_main_process and (not is_debug) and use_wandb: | |
wandb.log({"metrics/train_loss": train_loss}, step=global_step) | |
wandb.log({"metrics/train_grad_norm": train_grad_norm}, step=global_step) | |
wandb.log({"profiling/train_data_loading_time": data_loading_time}, step=global_step) | |
wandb.log({"profiling/train_prepare_everything_time": prepare_everything_time}, step=global_step) | |
wandb.log({"profiling/train_network_forward_time": network_forward_time}, step=global_step) | |
wandb.log({"profiling/train_network_backward_time": network_backward_time}, step=global_step) | |
# accelerator.log({"train_loss": train_loss}, step=global_step) | |
train_loss = 0.0 | |
train_grad_norm = 0.0 | |
data_loading_time = 0.0 | |
prepare_everything_time = 0.0 | |
network_forward_time = 0.0 | |
network_backward_time = 0.0 | |
# Save checkpoint | |
if global_step % checkpointing_steps == 0: | |
if accelerator.is_main_process: | |
save_path = os.path.join(output_dir, f"checkpoints/checkpoint-{global_step}") | |
accelerator.save_state(save_path) | |
logger.info(f"Saved state to {save_path} (global_step: {global_step})") | |
# Periodically validation | |
if accelerator.is_main_process and global_step % validation_steps == 0: | |
if use_ema: | |
# Store the UNet parameters temporarily and load the EMA parameters to perform inference. | |
ema_unet.store(unet.parameters()) | |
ema_unet.copy_to(unet.parameters()) | |
samples = [] | |
wandb_samples = [] | |
generator = torch.Generator(device=latents.device) | |
generator.manual_seed(seed) | |
height = train_data.sample_size[0] if not isinstance(train_data.sample_size, int) else train_data.sample_size | |
width = train_data.sample_size[1] if not isinstance(train_data.sample_size, int) else train_data.sample_size | |
prompts = validation_data.prompts | |
first_frame_paths = [None] * len(prompts) | |
if unet_additional_kwargs["first_frame_condition_mode"] != "none": | |
first_frame_paths = validation_data.path_to_first_frames | |
for idx, (prompt, first_frame_path) in enumerate(zip(prompts, first_frame_paths)): | |
sample = validation_pipeline( | |
prompt, | |
generator = generator, | |
video_length = train_data.sample_n_frames if not is_image else 2, | |
height = height, | |
width = width, | |
first_frame_paths = first_frame_path, | |
noise_sampling_method = unet_additional_kwargs['noise_sampling_method'], | |
noise_alpha = float(unet_additional_kwargs['noise_alpha']), | |
**validation_data, | |
).videos | |
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{idx}.gif") | |
samples.append(sample) | |
numpy_sample = (sample.squeeze(0).permute(1, 0, 2, 3) * 255).cpu().numpy().astype(np.uint8) | |
wandb_video = wandb.Video(numpy_sample, fps=8, caption=prompt) | |
wandb_samples.append(wandb_video) | |
if (not is_debug) and use_wandb: | |
val_title = 'val_videos' | |
wandb.log({val_title: wandb_samples}, step=global_step) | |
samples = torch.concat(samples) | |
save_path = f"{output_dir}/samples/sample-{global_step}.gif" | |
save_videos_grid(samples, save_path) | |
logger.info(f"Saved samples to {save_path}") | |
if use_ema: | |
# Switch back to the original UNet parameters. | |
ema_unet.restore(unet.parameters()) | |
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} | |
progress_bar.set_postfix(**logs) | |
if accelerator.is_main_process and (not is_debug) and use_wandb: | |
wandb.log({"metrics/train_lr": lr_scheduler.get_last_lr()[0]}, step=global_step) | |
if global_step >= max_train_steps: | |
break | |
# Create the pipeline using the trained modules and save it. | |
accelerator.wait_for_everyone() | |
if accelerator.is_main_process: | |
unet = accelerator.unwrap_model(unet) | |
pipeline = ConditionalAnimationPipeline( | |
text_encoder=text_encoder, | |
vae=vae, | |
unet=unet, | |
tokenizer=tokenizer, | |
scheduler=noise_scheduler, | |
) | |
pipeline.save_pretrained(f"{output_dir}/final_checkpoint") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, required=True) | |
parser.add_argument("--name", "-n", type=str, default="") | |
parser.add_argument("--wandb", action="store_true") | |
parser.add_argument("optional_args", nargs='*', default=[]) | |
args = parser.parse_args() | |
name = args.name + "_" + Path(args.config).stem | |
config = OmegaConf.load(args.config) | |
if args.optional_args: | |
modified_config = OmegaConf.from_dotlist(args.optional_args) | |
config = OmegaConf.merge(config, modified_config) | |
main(name=name, use_wandb=args.wandb, **config) | |