File size: 6,672 Bytes
df5cb06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
from oss_utils import ossService
import requests
import random
import json
import time
from diffusers.utils import load_image
from PIL import Image, ImageDraw, ImageFont
import numpy as np

# oss config
BUCKET = os.environ.get('BUCKET', '')
ENDPOINT = os.environ.get('ENDPOINT', '')
PREFIX = os.environ.get('OSS_DIR_PREFIX', '')
AK = os.environ.get('AK', '')
SK = os.environ.get('SK', '')
DASHONE_SERVICE_ID = os.environ.get('SERVICE_ID', '')
URL = os.environ.get('URL', '')
GET_URL = os.environ.get('GET_URL', '')

OUTPUT_PATH = './output'

os.makedirs(OUTPUT_PATH, exist_ok=True)
oss_service = ossService(AK, SK, ENDPOINT, BUCKET, PREFIX)

def async_request_and_query(data, request_id):
    url = URL
    headers = {'Content-Type': 'application/json'}

    # 1.发起一个异步请求
    print('Start sending request')
    response = requests.post(url, headers=headers, data=json.dumps(data))
    if response.status_code != requests.codes.ok:
        response.raise_for_status()
    response_json = json.loads(response.content.decode("utf-8"))
    print('Finish sending request')

    # 2.异步查询结果
    is_running = True
    running_print_count = 0
    sign_oss_path = None
    
    task_id = response_json['header']['task_id']
    get_url = GET_URL
    get_header = headers
    get_data = {"header": {"request_id":request_id,"service_id":DASHONE_SERVICE_ID,"task_id":f"{task_id}"}}

    print('Start querying results')
    while is_running:
        response2 = requests.post(get_url, headers=get_header, data=json.dumps(get_data))
        if response2.status_code != requests.codes.ok:
            response2.raise_for_status()
        response2_json = json.loads(response2.content.decode("utf-8"))

        task_status = response2_json['header']['task_status']

        if task_status == 'SUCCESS':
            sign_oss_path = response2_json['payload']['output']['res']
            break
        elif task_status in ['FAILED', 'ERROR'] or running_print_count >= 120:
            raise ValueError(f'Task Failed')
        else:
            time.sleep(1)
            running_print_count += 1
            continue
    
    print('Task succeeded!')
    return sign_oss_path

# def add_transparent_watermark(pil_image, watermark_text, position, opacity, font_path, font_size):
#     # 加载字体
#     font = ImageFont.truetype(font_path, font_size)
    
#     # 创建一个半透明的水印图层
#     watermark_layer = Image.new("RGBA", pil_image.size)
#     draw = ImageDraw.Draw(watermark_layer)
    
#     # 文本颜色和透明度
#     text_color = (255, 255, 255, opacity)  # 白色文本
#     outline_color = (0, 0, 0, opacity)  # 黑色轮廓

#     # 获取文本尺寸
#     text_width = draw.textlength(watermark_text, font=font)
#     text_height = text_width // 5
    
#     # 计算水印位置
#     img_width, img_height = pil_image.size
#     x = img_width - text_width - position[0]
#     y = img_height - text_height - position[1]

#     outline_range = 1  # 轮廓的粗细
#     for adj in range(-outline_range, outline_range+1):
#         for ord in range(-outline_range, outline_range+1):
#             if adj != 0 or ord != 0:  # 避免中心位置,那是真正的文本
#                 draw.text((x+adj, y+ord), watermark_text, font=font, fill=outline_color)

#     # 将文本绘制到水印层上
#     draw.text((x, y), watermark_text, font=font, fill=text_color)
    
#     # 将水印层叠加到原始图像上
#     pil_image_with_watermark = Image.alpha_composite(pil_image.convert("RGBA"), watermark_layer)
    
#     # 返回添加了水印的图像
#     return pil_image_with_watermark

def inference(input_image, upscale):
    # process alpha channel
    alpha_channel = input_image.split()[-1]
    input_image = input_image.convert('RGB')

    local_save_path = os.path.join(OUTPUT_PATH, 'tmp.png')
    local_output_save_path = os.path.join(OUTPUT_PATH, 'out.png')
    input_image.save(local_save_path)
    
    # generate image url
    oss_key = os.path.join(PREFIX, 'tmp.png')
    _, image_url = oss_service.uploadOssFile(oss_key, local_save_path)

    # rm local file
    if os.path.isfile(local_save_path):
        os.remove(local_save_path)

    data = {}
    data_header = {}
    data_payload = {}
    data_input = {}
    data_para = {}

    data_header['request_id'] = "".join(random.sample("0123456789abcdefghijklmnopqrstuvwxyz", 10))
    data_header['service_id'] = DASHONE_SERVICE_ID
    data_input['image_url'] = image_url
    data_para['upscale'] = upscale
    data_para['platform'] = 'modelscope'
    
    data_payload['input'] = data_input
    data_payload['parameters'] = data_para

    data['header'] = data_header
    data['payload'] = data_payload
    
    try:
        output_url = async_request_and_query(data=data, request_id=data_header['request_id'])
        download_status = oss_service.downloadFile(output_url, local_output_save_path)
        if not download_status:
            raise ValueError(f'Download output image failed')
    except:
        output_image = load_image('./error.png')
        return [output_image], 'The input image format or resolution does not meet the requirements. Please change the image or resize it and try again.'
    
    
    output_image = load_image(local_output_save_path)
        
    if os.path.isfile(local_output_save_path):
        os.remove(local_output_save_path)

    out_width, out_height = output_image.size

    # add alpha channel
    output_alpha_channel = alpha_channel.resize(output_image.size, resample=Image.LANCZOS)

    # merge
    output_image_alpha = Image.merge("RGBA", (*output_image.split(), output_alpha_channel))

    # new_width = out_width // 4
    # new_height = out_height // 4

    # resized_image = np.array(input_image.resize((new_width, new_height)))
    # np_output_image = np.array(output_image)
    # np_output_image[0:new_height, 0:new_width] = resized_image.copy()

    # new_output_image = Image.fromarray(np_output_image)

    # new_output_image = add_transparent_watermark(
    #     pil_image=new_output_image,
    #     watermark_text="追影-放大镜",
    #     position=(5, 5),
    #     opacity=200,
    #     font_path="AlibabaPuHuiTi-3-45-Light.ttf",  # 例如:"Arial", "Helvetica", "Times New Roman"
    #     font_size= out_width // 30
    # )

    org_width, org_height = input_image.size
    if max(org_width, org_height) > 1920 or min(org_width, org_height) > 1080:
        msg = 'The input image size has exceeded the optimal range. You can consider scaling the input image for better generation effect'
    else:
        msg = 'Task succeeded'
    return [output_image_alpha], msg