File size: 16,767 Bytes
8866a87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import os
import time
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.cuda.amp import autocast
import hydra

from omegaconf import DictConfig, OmegaConf
from hydra.utils import instantiate

from lightglue import LightGlue, SuperPoint, SIFT, ALIKED

import pycolmap

from visdom import Visdom


from vggsfm.datasets.demo_loader import DemoLoader
from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras

try:
    import poselib
    from vggsfm.two_view_geo.estimate_preliminary import estimate_preliminary_cameras_poselib

    print("Poselib is available")
except:
    print("Poselib is not installed. Please disable use_poselib")

from vggsfm.utils.utils import (
    set_seed_and_print,
    farthest_point_sampling,
    calculate_index_mappings,
    switch_tensor_order,
)


@hydra.main(config_path="cfgs/", config_name="demo")
def demo_fn(cfg: DictConfig):
    OmegaConf.set_struct(cfg, False)

    # Print configuration
    print("Model Config:", OmegaConf.to_yaml(cfg))

    torch.backends.cudnn.enabled = False
    torch.backends.cudnn.benchmark = True
    torch.backends.cudnn.deterministic = True

    # Set seed
    seed_all_random_engines(cfg.seed)

    # Model instantiation
    model = instantiate(cfg.MODEL, _recursive_=False, cfg=cfg)

    device = "cuda" if torch.cuda.is_available() else "cpu"

    model = model.to(device)

    # Prepare test dataset
    test_dataset = DemoLoader(
        SCENE_DIR=cfg.SCENE_DIR, img_size=cfg.img_size, normalize_cameras=False, load_gt=cfg.load_gt, cfg=cfg
    )

    if cfg.resume_ckpt:
        # Reload model
        checkpoint = torch.load(cfg.resume_ckpt)
        model.load_state_dict(checkpoint, strict=True)
        print(f"Successfully resumed from {cfg.resume_ckpt}")

    if cfg.visualize:
        from pytorch3d.structures import Pointclouds
        from pytorch3d.vis.plotly_vis import plot_scene
        from pytorch3d.renderer.cameras import PerspectiveCameras as PerspectiveCamerasVisual

        viz = Visdom()


    sequence_list = test_dataset.sequence_list

    for seq_name in sequence_list:
        print("*" * 50 + f" Testing on Scene {seq_name} " + "*" * 50)

        # Load the data
        batch, image_paths = test_dataset.get_data(sequence_name=seq_name, return_path=True)

        # Send to GPU
        images = batch["image"].to(device)
        crop_params = batch["crop_params"].to(device)


        # Unsqueeze to have batch size = 1
        images = images.unsqueeze(0)
        crop_params = crop_params.unsqueeze(0)

        batch_size = len(images)

        with torch.no_grad():
            # Run the model
            assert cfg.mixed_precision in ("None", "bf16", "fp16")
            if cfg.mixed_precision == "None":
                dtype = torch.float32
            elif cfg.mixed_precision == "bf16":
                dtype = torch.bfloat16
            elif cfg.mixed_precision == "fp16":
                dtype = torch.float16
            else:
                raise NotImplementedError(f"dtype {cfg.mixed_precision} is not supported now")

            predictions = run_one_scene(
                model,
                images,
                crop_params=crop_params,
                query_frame_num=cfg.query_frame_num,
                image_paths=image_paths,
                dtype=dtype,
                cfg=cfg,
            )

        # Export prediction as colmap format
        reconstruction_pycolmap = predictions["reconstruction"]
        output_path = os.path.join("output", seq_name)
        print("-" * 50)
        print(f"The output has been saved in COLMAP style at: {output_path} ")
        os.makedirs(output_path, exist_ok=True)
        reconstruction_pycolmap.write(output_path)

        pred_cameras_PT3D = predictions["pred_cameras_PT3D"]

        if cfg.visualize:
            if "points3D_rgb" in predictions:
                pcl = Pointclouds(points=predictions["points3D"][None], features=predictions["points3D_rgb"][None])
            else:
                pcl = Pointclouds(points=predictions["points3D"][None])

            visual_cameras = PerspectiveCamerasVisual(
                R=pred_cameras_PT3D.R,
                T=pred_cameras_PT3D.T,
                device=pred_cameras_PT3D.device,
            )

            visual_dict = {"scenes": {"points": pcl, "cameras": visual_cameras}}

            fig = plot_scene(visual_dict, camera_scale=0.05)

            env_name = f"demo_visual_{seq_name}"
            print(f"Visualizing the scene by visdom at env: {env_name}")
            viz.plotlyplot(fig, env=env_name, win="3D")

    return True


def run_one_scene(model, images, crop_params=None, query_frame_num=3, image_paths=None, dtype=None, cfg=None):
    """
    images have been normalized to the range [0, 1] instead of [0, 255]
    """
    batch_num, frame_num, image_dim, height, width = images.shape
    device = images.device
    reshaped_image = images.reshape(batch_num * frame_num, image_dim, height, width)

    predictions = {}
    extra_dict = {}

    camera_predictor = model.camera_predictor
    track_predictor = model.track_predictor
    triangulator = model.triangulator

    # Find the query frames
    # First use DINO to find the most common frame among all the input frames
    # i.e., the one has highest (average) cosine similarity to all others
    # Then use farthest_point_sampling to find the next ones
    # The number of query frames is determined by query_frame_num

    with autocast(dtype=dtype):
        query_frame_indexes = find_query_frame_indexes(reshaped_image, camera_predictor, frame_num)

    image_paths = [os.path.basename(imgpath) for imgpath in image_paths]

    if cfg.center_order:
        # The code below switchs the first frame (frame 0) to the most common frame
        center_frame_index = query_frame_indexes[0]
        center_order = calculate_index_mappings(center_frame_index, frame_num, device=device)

        images, crop_params = switch_tensor_order([images, crop_params], center_order, dim=1)
        reshaped_image = switch_tensor_order([reshaped_image], center_order, dim=0)[0]

        image_paths = [image_paths[i] for i in center_order.cpu().numpy().tolist()]

        # Also update query_frame_indexes:
        query_frame_indexes = [center_frame_index if x == 0 else x for x in query_frame_indexes]
        query_frame_indexes[0] = 0

    # only pick query_frame_num
    query_frame_indexes = query_frame_indexes[:query_frame_num]

    # Prepare image feature maps for tracker
    fmaps_for_tracker = track_predictor.process_images_to_fmaps(images)

    # Predict tracks
    with autocast(dtype=dtype):
        pred_track, pred_vis, pred_score = predict_tracks(
            cfg.query_method,
            cfg.max_query_pts,
            track_predictor,
            images,
            fmaps_for_tracker,
            query_frame_indexes,
            frame_num,
            device,
            cfg,
        )

        if cfg.comple_nonvis:
            pred_track, pred_vis, pred_score = comple_nonvis_frames(
                track_predictor,
                images,
                fmaps_for_tracker,
                frame_num,
                device,
                pred_track,
                pred_vis,
                pred_score,
                500,
                cfg=cfg,
            )

    torch.cuda.empty_cache()

    # If necessary, force all the predictions at the padding areas as non-visible
    if crop_params is not None:
        boundaries = crop_params[:, :, -4:-2].abs().to(device)
        boundaries = torch.cat([boundaries, reshaped_image.shape[-1] - boundaries], dim=-1)
        hvis = torch.logical_and(
            pred_track[..., 1] >= boundaries[:, :, 1:2], pred_track[..., 1] <= boundaries[:, :, 3:4]
        )
        wvis = torch.logical_and(
            pred_track[..., 0] >= boundaries[:, :, 0:1], pred_track[..., 0] <= boundaries[:, :, 2:3]
        )
        force_vis = torch.logical_and(hvis, wvis)
        pred_vis = pred_vis * force_vis.float()

    # TODO: plot 2D matches
    if cfg.use_poselib:
        estimate_preliminary_cameras_fn = estimate_preliminary_cameras_poselib
    else:
        estimate_preliminary_cameras_fn = estimate_preliminary_cameras

    # Estimate preliminary_cameras by recovering fundamental/essential/homography matrix from 2D matches
    # By default, we use fundamental matrix estimation with 7p/8p+LORANSAC
    # All the operations are batched and differentiable (if necessary)
    # except when you enable use_poselib to save GPU memory
    _, preliminary_dict = estimate_preliminary_cameras_fn(
        pred_track,
        pred_vis,
        width,
        height,
        tracks_score=pred_score,
        max_error=cfg.fmat_thres,
        loopresidual=True,
        # max_ransac_iters=cfg.max_ransac_iters,
    )

    pose_predictions = camera_predictor(reshaped_image, batch_size=batch_num)

    pred_cameras = pose_predictions["pred_cameras"]

    # Conduct Triangulation and Bundle Adjustment
    (
        BA_cameras_PT3D,
        extrinsics_opencv,
        intrinsics_opencv,
        points3D,
        points3D_rgb,
        reconstruction,
        valid_frame_mask,
    ) = triangulator(
        pred_cameras,
        pred_track,
        pred_vis,
        images,
        preliminary_dict,
        image_paths=image_paths,
        crop_params=crop_params,
        pred_score=pred_score,
        fmat_thres=cfg.fmat_thres,
        BA_iters=cfg.BA_iters,
        max_reproj_error = cfg.max_reproj_error,
        init_max_reproj_error=cfg.init_max_reproj_error,
        cfg=cfg,
    )

    if cfg.center_order:
        # NOTE we changed the image order previously, now we need to switch it back
        BA_cameras_PT3D = BA_cameras_PT3D[center_order]
        extrinsics_opencv = extrinsics_opencv[center_order]
        intrinsics_opencv = intrinsics_opencv[center_order]

    predictions["pred_cameras_PT3D"] = BA_cameras_PT3D
    predictions["extrinsics_opencv"] = extrinsics_opencv
    predictions["intrinsics_opencv"] = intrinsics_opencv
    predictions["points3D"] = points3D
    predictions["points3D_rgb"] = points3D_rgb
    predictions["reconstruction"] = reconstruction
    return predictions


def predict_tracks(
    query_method,
    max_query_pts,
    track_predictor,
    images,
    fmaps_for_tracker,
    query_frame_indexes,
    frame_num,
    device,
    cfg=None,
):
    pred_track_list = []
    pred_vis_list = []
    pred_score_list = []

    for query_index in query_frame_indexes:
        print(f"Predicting tracks with query_index = {query_index}")

        # Find query_points at the query frame
        query_points = get_query_points(images[:, query_index], query_method, max_query_pts)

        # Switch so that query_index frame stays at the first frame
        # This largely simplifies the code structure of tracker
        new_order = calculate_index_mappings(query_index, frame_num, device=device)
        images_feed, fmaps_feed = switch_tensor_order([images, fmaps_for_tracker], new_order)

        # Feed into track predictor
        fine_pred_track, _, pred_vis, pred_score = track_predictor(images_feed, query_points, fmaps=fmaps_feed)

        # Switch back the predictions
        fine_pred_track, pred_vis, pred_score = switch_tensor_order([fine_pred_track, pred_vis, pred_score], new_order)

        # Append predictions for different queries
        pred_track_list.append(fine_pred_track)
        pred_vis_list.append(pred_vis)
        pred_score_list.append(pred_score)

    pred_track = torch.cat(pred_track_list, dim=2)
    pred_vis = torch.cat(pred_vis_list, dim=2)
    pred_score = torch.cat(pred_score_list, dim=2)

    return pred_track, pred_vis, pred_score


def comple_nonvis_frames(
    track_predictor,
    images,
    fmaps_for_tracker,
    frame_num,
    device,
    pred_track,
    pred_vis,
    pred_score,
    min_vis=500,
    cfg=None,
):
    # if a frame has too few visible inlier, use it as a query
    non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
    last_query = -1
    while len(non_vis_frames) > 0:
        print("Processing non visible frames")
        print(non_vis_frames)
        if non_vis_frames[0] == last_query:
            print("The non vis frame still does not has enough 2D matches")
            pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
                "sp+sift+aliked",
                cfg.max_query_pts // 2,
                track_predictor,
                images,
                fmaps_for_tracker,
                non_vis_frames,
                frame_num,
                device,
                cfg,
            )
            # concat predictions
            pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
            pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
            pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
            break

        non_vis_query_list = [non_vis_frames[0]]
        last_query = non_vis_frames[0]
        pred_track_comple, pred_vis_comple, pred_score_comple = predict_tracks(
            cfg.query_method,
            cfg.max_query_pts,
            track_predictor,
            images,
            fmaps_for_tracker,
            non_vis_query_list,
            frame_num,
            device,
            cfg,
        )

        # concat predictions
        pred_track = torch.cat([pred_track, pred_track_comple], dim=2)
        pred_vis = torch.cat([pred_vis, pred_vis_comple], dim=2)
        pred_score = torch.cat([pred_score, pred_score_comple], dim=2)
        non_vis_frames = torch.nonzero((pred_vis.squeeze(0) > 0.05).sum(-1) < min_vis).squeeze(-1).tolist()
    return pred_track, pred_vis, pred_score


def find_query_frame_indexes(reshaped_image, camera_predictor, query_frame_num, image_size=336):
    # Downsample image to image_size x image_size
    # because we found it is unnecessary to use high resolution
    rgbs = F.interpolate(reshaped_image, (image_size, image_size), mode="bilinear", align_corners=True)
    rgbs = camera_predictor._resnet_normalize_image(rgbs)

    # Get the image features (patch level)
    frame_feat = camera_predictor.backbone(rgbs, is_training=True)
    frame_feat = frame_feat["x_norm_patchtokens"]
    frame_feat_norm = F.normalize(frame_feat, p=2, dim=1)

    # Compute the similiarty matrix
    frame_feat_norm = frame_feat_norm.permute(1, 0, 2)
    similarity_matrix = torch.bmm(frame_feat_norm, frame_feat_norm.transpose(-1, -2))
    similarity_matrix = similarity_matrix.mean(dim=0)
    distance_matrix = 1 - similarity_matrix.clone()

    # Ignore self-pairing
    similarity_matrix.fill_diagonal_(0)

    similarity_sum = similarity_matrix.sum(dim=1)

    # Find the most common frame
    most_common_frame_index = torch.argmax(similarity_sum).item()

    # Conduct FPS sampling
    # Starting from the most_common_frame_index,
    # try to find the farthest frame,
    # then the farthest to the last found frame
    # (frames are not allowed to be found twice)
    fps_idx = farthest_point_sampling(distance_matrix, query_frame_num, most_common_frame_index)

    return fps_idx


def get_query_points(query_image, query_method, max_query_num=4096, det_thres=0.005):
    # Run superpoint and sift on the target frame
    # Feel free to modify for your own

    methods = query_method.split("+")
    pred_points = []

    for method in methods:
        if "sp" in method:
            extractor = SuperPoint(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
        elif "sift" in method:
            extractor = SIFT(max_num_keypoints=max_query_num).cuda().eval()
        elif "aliked" in method:
            extractor = ALIKED(max_num_keypoints=max_query_num, detection_threshold=det_thres).cuda().eval()
        else:
            raise NotImplementedError(f"query method {method} is not supprted now")

        query_points = extractor.extract(query_image)["keypoints"]
        pred_points.append(query_points)

    query_points = torch.cat(pred_points, dim=1)

    if query_points.shape[1] > max_query_num:
        random_point_indices = torch.randperm(query_points.shape[1])[:max_query_num]
        query_points = query_points[:, random_point_indices, :]

    return query_points


def seed_all_random_engines(seed: int) -> None:
    np.random.seed(seed)
    torch.manual_seed(seed)
    random.seed(seed)


if __name__ == "__main__":
    with torch.no_grad():
        demo_fn()