import gradio as gr import librosa from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel model_name = "facebook/wav2vec2-xls-r-2b-21-to-en" feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) model = SpeechEncoderDecoderModel.from_pretrained(model_name) def process_audio_file(file): data, sr = librosa.load(file) if sr != 16000: data = librosa.resample(data, sr, 16000) input_values = feature_extractor(data, return_tensors="pt").input_values return input_values def transcribe(file_mic, file_upload): warn_output = "" if (file_mic is not None) and (file_upload is not None): warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" file = file_mic elif (file_mic is None) and (file_upload is None): return "ERROR: You have to either use the microphone or upload an audio file" elif file_mic is not None: file = file_mic else: file = file_upload input_values = process_audio_file(file) sequences = model.generate(input_values, num_beams=1, max_length=30) transcription = tokenizer.batch_decode(sequences, skip_special_tokens=True) return warn_output + transcription[0] iface = gr.Interface( fn=transcribe, inputs=[ gr.inputs.Audio(source="microphone", type='filepath', optional=True), gr.inputs.Audio(source="upload", type='filepath', optional=True), ], outputs="text", layout="horizontal", theme="huggingface", title="XLS-R 2B 21-to-EN Speech Translation", description="A simple interface to translate from 21 spoken languages to written English.", ) iface.launch()