Spaces:
Build error
Build error
import gradio as gr | |
import librosa | |
from transformers import AutoFeatureExtractor, AutoTokenizer, SpeechEncoderDecoderModel | |
model_name = "facebook/wav2vec2-xls-r-2b-21-to-en" | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False) | |
model = SpeechEncoderDecoderModel.from_pretrained(model_name) | |
def process_audio_file(file): | |
data, sr = librosa.load(file) | |
if sr != 16000: | |
data = librosa.resample(data, sr, 16000) | |
input_values = feature_extractor(data, return_tensors="pt").input_values | |
return input_values | |
def transcribe(file_mic, file_upload): | |
warn_output = "" | |
if (file_mic is not None) and (file_upload is not None): | |
warn_output = "WARNING: You've uploaded an audio file and used the microphone. The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
file = file_mic | |
elif (file_mic is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
elif file_mic is not None: | |
file = file_mic | |
else: | |
file = file_upload | |
input_values = process_audio_file(file) | |
sequences = model.generate(input_values, num_beams=1, max_length=30) | |
transcription = tokenizer.batch_decode(sequences, skip_special_tokens=True) | |
return warn_output + transcription[0] | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.inputs.Audio(source="microphone", type='filepath', optional=True), | |
gr.inputs.Audio(source="upload", type='filepath', optional=True), | |
], | |
outputs="text", | |
layout="horizontal", | |
theme="huggingface", | |
title="XLS-R 2B 21-to-EN Speech Translation", | |
description="A simple interface to translate from 21 spoken languages to written English.", | |
) | |
iface.launch() | |