File size: 5,834 Bytes
3d8cfe9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from __future__ import annotations

import os
import pathlib
import shlex
import shutil
import subprocess

import gradio as gr
import PIL.Image
import torch
import json

os.environ['PYTHONPATH'] = f'custom-diffusion:{os.getenv("PYTHONPATH", "")}'


def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
    w, h = image.size
    if w == h:
        return image
    elif w > h:
        new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
        new_image.paste(image, (0, (w - h) // 2))
        return new_image
    else:
        new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
        new_image.paste(image, ((h - w) // 2, 0))
        return new_image


class Trainer:
    def __init__(self):
        self.is_running = False
        self.is_running_message = 'Another training is in progress.'

        self.output_dir = pathlib.Path('results')
        self.instance_data_dir = self.output_dir / 'training_data'
        self.class_data_dir = self.output_dir / 'regularization_data'

    def check_if_running(self) -> dict:
        if self.is_running:
            return gr.update(value=self.is_running_message)
        else:
            return gr.update(value='No training is running.')

    def cleanup_dirs(self) -> None:
        shutil.rmtree(self.output_dir, ignore_errors=True)

    def prepare_dataset(self, concept_images_collection: list, concept_prompt_collection: list, class_prompt_collection: list, resolution: int) -> None:
        self.instance_data_dir.mkdir(parents=True)
        concepts_list = []

        for i in range(len(concept_images_collection)):
            concept_dir =  self.instance_data_dir /  f'{i}'
            class_dir = self.class_data_dir / f'{i}'
            concept_dir.mkdir(parents=True)
            concept_images = concept_images_collection[i]

            concepts_list.append(
                    {
                        "instance_prompt": concept_prompt_collection[i],
                        "class_prompt": class_prompt_collection[i],
                        "instance_data_dir": f'{concept_dir}',
                        "class_data_dir": f'{class_dir}'
                    }
                )

            for i, temp_path in enumerate(concept_images):
                image = PIL.Image.open(temp_path.name)
                image = pad_image(image)
                # image = image.resize((resolution, resolution))
                image = image.convert('RGB')
                out_path = concept_dir / f'{i:03d}.jpg'
                image.save(out_path, format='JPEG', quality=100)

        print(concepts_list)
        json.dump(concepts_list, open( f'{self.output_dir}/temp.json' , 'w') )

        
    def run(
        self,
        base_model: str,
        resolution_s: str,
        n_steps: int,
        learning_rate: float,
        train_text_encoder: bool,
        modifier_token: bool,
        gradient_accumulation: int,
        batch_size: int,
        use_8bit_adam: bool,
        gradient_checkpointing: bool,
        gen_images: bool,
        num_reg_images: int,
        *inputs, 
    ) -> tuple[dict, list[pathlib.Path]]:
        if not torch.cuda.is_available():
            raise gr.Error('CUDA is not available.')

        num_concept = 0
        for i in range(len(inputs) // 3):
            if inputs[i] != None:
                num_concept +=1

        print(num_concept, inputs)
        concept_images_collection = inputs[: num_concept]
        concept_prompt_collection = inputs[3:  3 + num_concept]
        class_prompt_collection = inputs[6: 6+num_concept]
        if self.is_running:
            return gr.update(value=self.is_running_message), []

        if concept_images_collection is None:
            raise gr.Error('You need to upload images.')
        if not concept_prompt_collection:
            raise gr.Error('The concept prompt is missing.')

        resolution = int(resolution_s)

        self.cleanup_dirs()
        self.prepare_dataset(concept_images_collection, concept_prompt_collection, class_prompt_collection, resolution)
        torch.cuda.empty_cache()
        command = f'''
        accelerate launch custom-diffusion/src/diffuser_training.py \
          --pretrained_model_name_or_path={base_model}   \
          --output_dir={self.output_dir} \
          --concepts_list={f'{self.output_dir}/temp.json'} \
          --with_prior_preservation --prior_loss_weight=1.0 \
          --resolution={resolution}  \
          --train_batch_size={batch_size}  \
          --gradient_accumulation_steps={gradient_accumulation}  \
          --learning_rate={learning_rate}  \
          --lr_scheduler="constant" \
          --lr_warmup_steps=0 \
          --max_train_steps={n_steps} \
          --num_class_images={num_reg_images} \
          --initializer_token="ktn+pll+ucd" \
          --scale_lr --hflip 
        '''
        if modifier_token:
            tokens = '+'.join([f'<new{i+1}>' for i in range(num_concept)])
            command += f' --modifier_token {tokens}'
            
        if not gen_images:
            command += ' --real_prior'
        if use_8bit_adam:
            command += ' --use_8bit_adam'
        if train_text_encoder:
            command += f' --train_text_encoder'
        if gradient_checkpointing:
            command += f' --gradient_checkpointing'
        
        with open(self.output_dir / 'train.sh', 'w') as f:
            command_s = ' '.join(command.split())
            f.write(command_s)

        self.is_running = True
        res = subprocess.run(shlex.split(command))
        self.is_running = False

        if res.returncode == 0:
            result_message = 'Training Completed!'
        else:
            result_message = 'Training Failed!'
        weight_paths = sorted(self.output_dir.glob('*.bin'))
        return gr.update(value=result_message), weight_paths