Spaces:
Build error
Build error
File size: 5,834 Bytes
3d8cfe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
from __future__ import annotations
import os
import pathlib
import shlex
import shutil
import subprocess
import gradio as gr
import PIL.Image
import torch
import json
os.environ['PYTHONPATH'] = f'custom-diffusion:{os.getenv("PYTHONPATH", "")}'
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
w, h = image.size
if w == h:
return image
elif w > h:
new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
new_image.paste(image, (0, (w - h) // 2))
return new_image
else:
new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
new_image.paste(image, ((h - w) // 2, 0))
return new_image
class Trainer:
def __init__(self):
self.is_running = False
self.is_running_message = 'Another training is in progress.'
self.output_dir = pathlib.Path('results')
self.instance_data_dir = self.output_dir / 'training_data'
self.class_data_dir = self.output_dir / 'regularization_data'
def check_if_running(self) -> dict:
if self.is_running:
return gr.update(value=self.is_running_message)
else:
return gr.update(value='No training is running.')
def cleanup_dirs(self) -> None:
shutil.rmtree(self.output_dir, ignore_errors=True)
def prepare_dataset(self, concept_images_collection: list, concept_prompt_collection: list, class_prompt_collection: list, resolution: int) -> None:
self.instance_data_dir.mkdir(parents=True)
concepts_list = []
for i in range(len(concept_images_collection)):
concept_dir = self.instance_data_dir / f'{i}'
class_dir = self.class_data_dir / f'{i}'
concept_dir.mkdir(parents=True)
concept_images = concept_images_collection[i]
concepts_list.append(
{
"instance_prompt": concept_prompt_collection[i],
"class_prompt": class_prompt_collection[i],
"instance_data_dir": f'{concept_dir}',
"class_data_dir": f'{class_dir}'
}
)
for i, temp_path in enumerate(concept_images):
image = PIL.Image.open(temp_path.name)
image = pad_image(image)
# image = image.resize((resolution, resolution))
image = image.convert('RGB')
out_path = concept_dir / f'{i:03d}.jpg'
image.save(out_path, format='JPEG', quality=100)
print(concepts_list)
json.dump(concepts_list, open( f'{self.output_dir}/temp.json' , 'w') )
def run(
self,
base_model: str,
resolution_s: str,
n_steps: int,
learning_rate: float,
train_text_encoder: bool,
modifier_token: bool,
gradient_accumulation: int,
batch_size: int,
use_8bit_adam: bool,
gradient_checkpointing: bool,
gen_images: bool,
num_reg_images: int,
*inputs,
) -> tuple[dict, list[pathlib.Path]]:
if not torch.cuda.is_available():
raise gr.Error('CUDA is not available.')
num_concept = 0
for i in range(len(inputs) // 3):
if inputs[i] != None:
num_concept +=1
print(num_concept, inputs)
concept_images_collection = inputs[: num_concept]
concept_prompt_collection = inputs[3: 3 + num_concept]
class_prompt_collection = inputs[6: 6+num_concept]
if self.is_running:
return gr.update(value=self.is_running_message), []
if concept_images_collection is None:
raise gr.Error('You need to upload images.')
if not concept_prompt_collection:
raise gr.Error('The concept prompt is missing.')
resolution = int(resolution_s)
self.cleanup_dirs()
self.prepare_dataset(concept_images_collection, concept_prompt_collection, class_prompt_collection, resolution)
torch.cuda.empty_cache()
command = f'''
accelerate launch custom-diffusion/src/diffuser_training.py \
--pretrained_model_name_or_path={base_model} \
--output_dir={self.output_dir} \
--concepts_list={f'{self.output_dir}/temp.json'} \
--with_prior_preservation --prior_loss_weight=1.0 \
--resolution={resolution} \
--train_batch_size={batch_size} \
--gradient_accumulation_steps={gradient_accumulation} \
--learning_rate={learning_rate} \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--max_train_steps={n_steps} \
--num_class_images={num_reg_images} \
--initializer_token="ktn+pll+ucd" \
--scale_lr --hflip
'''
if modifier_token:
tokens = '+'.join([f'<new{i+1}>' for i in range(num_concept)])
command += f' --modifier_token {tokens}'
if not gen_images:
command += ' --real_prior'
if use_8bit_adam:
command += ' --use_8bit_adam'
if train_text_encoder:
command += f' --train_text_encoder'
if gradient_checkpointing:
command += f' --gradient_checkpointing'
with open(self.output_dir / 'train.sh', 'w') as f:
command_s = ' '.join(command.split())
f.write(command_s)
self.is_running = True
res = subprocess.run(shlex.split(command))
self.is_running = False
if res.returncode == 0:
result_message = 'Training Completed!'
else:
result_message = 'Training Failed!'
weight_paths = sorted(self.output_dir.glob('*.bin'))
return gr.update(value=result_message), weight_paths
|