File size: 4,069 Bytes
37c870e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
"""
Test the OpenAI compatible server

Launch:
python3 launch_openai_api_test_server.py --multimodal
"""

import openai

from fastchat.utils import run_cmd

openai.api_key = "EMPTY"  # Not support yet
openai.base_url = "http://localhost:8000/v1/"


def encode_image(image):
    import base64
    from io import BytesIO
    import requests

    from PIL import Image

    if image.startswith("http://") or image.startswith("https://"):
        response = requests.get(image)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image).convert("RGB")

    buffered = BytesIO()
    image.save(buffered, format="PNG")
    img_b64_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

    return img_b64_str


def test_list_models():
    model_list = openai.models.list()
    names = [x.id for x in model_list.data]
    return names


def test_chat_completion(model):
    image_url = "https://picsum.photos/seed/picsum/1024/1024"
    base64_image_url = f"data:image/jpeg;base64,{encode_image(image_url)}"

    # No Image
    completion = openai.chat.completions.create(
        model=model,
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "Tell me about alpacas."},
                ],
            }
        ],
        temperature=0,
    )
    print(completion.choices[0].message.content)
    print("=" * 25)

    # Image using url link
    completion = openai.chat.completions.create(
        model=model,
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "What’s in this image?"},
                    {"type": "image_url", "image_url": {"url": image_url}},
                ],
            }
        ],
        temperature=0,
    )
    print(completion.choices[0].message.content)
    print("=" * 25)

    # Image using base64 image url
    completion = openai.chat.completions.create(
        model=model,
        messages=[
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "What’s in this image?"},
                    {"type": "image_url", "image_url": {"url": base64_image_url}},
                ],
            }
        ],
        temperature=0,
    )
    print(completion.choices[0].message.content)
    print("=" * 25)


def test_chat_completion_stream(model):
    image_url = "https://picsum.photos/seed/picsum/1024/1024"

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What’s in this image?"},
                {"type": "image_url", "image_url": {"url": image_url}},
            ],
        }
    ]
    res = openai.chat.completions.create(
        model=model, messages=messages, stream=True, temperature=0
    )
    for chunk in res:
        try:
            content = chunk.choices[0].delta.content
            if content is None:
                content = ""
        except Exception as e:
            content = chunk.choices[0].delta.get("content", "")
        print(content, end="", flush=True)
    print()


def test_openai_curl():
    run_cmd(
        """curl http://localhost:8000/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "llava-v1.5-7b",
    "messages": [
      {
        "role": "user",
        "content": [
          {
            "type": "text",
            "text": "What’s in this image?"
          },
          {
            "type": "image_url",
            "image_url": {
              "url": "https://picsum.photos/seed/picsum/1024/1024"
            }
          }
        ]
      }
    ],
    "max_tokens": 300
  }'
            """
    )

    print()


if __name__ == "__main__":
    models = test_list_models()
    print(f"models: {models}")

    for model in models:
        print(f"===== Test {model} ======")
        test_chat_completion(model)
        test_chat_completion_stream(model)
    test_openai_curl()