LongVU / app.py
Vision-CAIR's picture
Update app.py
0733f19 verified
import spaces
import os
import re
import traceback
import torch
import gradio as gr
import sys
import numpy as np
from longvu.builder import load_pretrained_model
from longvu.constants import (
DEFAULT_IMAGE_TOKEN,
IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
KeywordsStoppingCriteria,
process_images,
tokenizer_image_token,
)
from decord import cpu, VideoReader
from huggingface_hub import snapshot_download
title_markdown = """
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1 >LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding</h1>
</div>
</div>
<div align="center">
<div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
<a href='https://vision-cair.github.io/LongVU/'><img src='https://img.shields.io/badge/Project-LongVU-blue'></a>
<a href='https://huggingface.co./Vision-CAIR/LongVU_Qwen2_7B'><img src='https://img.shields.io/badge/model-checkpoints-yellow'></a>
</div>
</div>
"""
block_css = """
#buttons button {
min-width: min(120px,100%);
color: #9C276A
}
"""
plum_color = gr.themes.colors.Color(
name='plum',
c50='#F8E4EF',
c100='#E9D0DE',
c200='#DABCCD',
c300='#CBA8BC',
c400='#BC94AB',
c500='#AD809A',
c600='#9E6C89',
c700='#8F5878',
c800='#804467',
c900='#713056',
c950='#662647',
)
class Chat:
def __init__(self):
self.version = "qwen"
model_name = "cambrian_qwen"
model_path = snapshot_download("Vision-CAIR/LongVU_Qwen2_7B", repo_type="model")
device = "cuda"
self.tokenizer, self.model, self.processor, _ = load_pretrained_model(model_path, None, model_name, device=device)
self.model.eval()
def remove_after_last_dot(self, s):
last_dot_index = s.rfind('.')
if last_dot_index == -1:
return s
return s[:last_dot_index + 1]
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(self, data: list, message, temperature, top_p, max_output_tokens):
# TODO: support multiple turns of conversation.
assert len(data) == 1
tensor, image_sizes, modal = data[0]
conv = conv_templates[self.version].copy()
if isinstance(message, str):
conv.append_message("user", DEFAULT_IMAGE_TOKEN + '\n' + message)
elif isinstance(message, list):
if DEFAULT_IMAGE_TOKEN not in message[0]['content']:
message[0]['content'] = DEFAULT_IMAGE_TOKEN + '\n' + message[0]['content']
for mes in message:
conv.append_message(mes["role"], mes["content"])
conv.append_message("assistant", None)
prompt = conv.get_prompt()
input_ids = (
tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
.unsqueeze(0)
.to(self.model.device)
)
if "llama3" in self.version:
input_ids = input_ids[0][1:].unsqueeze(0) # remove bos
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
with torch.inference_mode():
output_ids = self.model.generate(
input_ids,
images=tensor,
image_sizes=image_sizes,
do_sample=True,
temperature=temperature,
max_new_tokens=max_output_tokens,
use_cache=True,
top_p=top_p,
stopping_criteria=[stopping_criteria],
)
pred = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
return self.remove_after_last_dot(pred)
@spaces.GPU(duration=120)
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
if textbox_in is None:
raise gr.Error("Chat messages cannot be empty")
return (
gr.update(value=image, interactive=True),
gr.update(value=video, interactive=True),
message,
chatbot,
None,
)
data = []
processor = handler.processor
try:
if image is not None:
data.append((processor['image'](image).to(handler.model.device, dtype=dtype), None, '<image>'))
elif video is not None:
vr = VideoReader(video, ctx=cpu(0), num_threads=1)
fps = float(vr.get_avg_fps())
frame_indices = np.array(
[
i
for i in range(
0,
len(vr),
round(fps),
)
]
)
video_tensor = []
for frame_index in frame_indices:
img = vr[frame_index].asnumpy()
video_tensor.append(img)
video_tensor = np.stack(video_tensor)
image_sizes = [video_tensor[0].shape[:2]]
video_tensor = process_images(video_tensor, processor, handler.model.config)
video_tensor = [item.unsqueeze(0).to(handler.model.device, dtype=dtype) for item in video_tensor]
data.append((video_tensor, image_sizes, '<video>'))
elif image is None and video is None:
data.append((None, None, '<text>'))
else:
raise NotImplementedError("Not support image and video at the same time")
except Exception as e:
traceback.print_exc()
return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot, None
assert len(message) % 2 == 0, "The message should be a pair of user and system message."
show_images = ""
if image is not None:
show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
if video is not None:
show_images += f'<video controls playsinline width="300" style="display: inline-block;" src="./file={video}"></video>'
one_turn_chat = [textbox_in, None]
# 1. first run case
if len(chatbot) == 0:
one_turn_chat[0] += "\n" + show_images
# 2. not first run case
else:
# scanning the last image or video
length = len(chatbot)
for i in range(length - 1, -1, -1):
previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[i][0])
previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;" src="./file=(.+?)"', chatbot[i][0])
if len(previous_image) > 0:
previous_image = previous_image[-1]
# 2.1 new image append or pure text input will start a new conversation
if (video is not None) or (image is not None and os.path.basename(previous_image) != os.path.basename(image)):
message.clear()
one_turn_chat[0] += "\n" + show_images
break
elif len(previous_video) > 0:
previous_video = previous_video[-1]
# 2.2 new video append or pure text input will start a new conversation
if image is not None or (video is not None and os.path.basename(previous_video) != os.path.basename(video)):
message.clear()
one_turn_chat[0] += "\n" + show_images
break
message.append({'role': 'user', 'content': textbox_in})
text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
message.append({'role': 'assistant', 'content': text_en_out})
one_turn_chat[1] = text_en_out
chatbot.append(one_turn_chat)
return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot, None
def regenerate(message, chatbot):
message.pop(-1), message.pop(-1)
chatbot.pop(-1)
return message, chatbot
def clear_history(message, chatbot):
message.clear(), chatbot.clear()
return (gr.update(value=None, interactive=True),
gr.update(value=None, interactive=True),
message, chatbot,
gr.update(value=None, interactive=True))
handler = Chat()
textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)
theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")
with gr.Blocks(title='LongVU', theme=theme, css=block_css) as demo:
gr.Markdown(title_markdown)
message = gr.State([])
with gr.Row():
with gr.Column(scale=3):
image = gr.State(None)
video = gr.Video(label="Input Video")
with gr.Accordion("Parameters", open=True) as parameter_row:
temperature = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.1,
interactive=True,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.7,
step=0.1,
interactive=True,
label="Top P",
)
max_output_tokens = gr.Slider(
minimum=64,
maximum=512,
value=128,
step=64,
interactive=True,
label="Max output tokens",
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="LongVU", bubble_full_width=True, height=420)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=50):
submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
with gr.Row(elem_id="buttons") as button_row:
upvote_btn = gr.Button(value="πŸ‘ Upvote", interactive=True)
downvote_btn = gr.Button(value="πŸ‘Ž Downvote", interactive=True)
regenerate_btn = gr.Button(value="πŸ”„ Regenerate", interactive=True)
clear_btn = gr.Button(value="πŸ—‘οΈ Clear history", interactive=True)
with gr.Row():
with gr.Column():
gr.Examples(
examples=[
[
f"./examples/video3.mp4",
"What is the moving direction of the yellow ball?",
],
[
f"./examples/video1.mp4",
"Describe this video in detail.",
],
[
f"./examples/video2.mp4",
"What is the name of the store?",
],
],
inputs=[video, textbox],
)
submit_btn.click(
generate,
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
[image, video, message, chatbot, textbox])
textbox.submit(
generate,
[
image,
video,
message,
chatbot,
textbox,
temperature,
top_p,
max_output_tokens,
],
[image, video, message, chatbot, textbox],
)
regenerate_btn.click(
regenerate,
[message, chatbot],
[message, chatbot]).then(
generate,
[image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
[image, video, message, chatbot])
clear_btn.click(
clear_history,
[message, chatbot],
[image, video, message, chatbot, textbox])
demo.launch()