julien-c HF staff commited on
Commit
d01d8c4
1 Parent(s): 7f65ce0

Add description to card metadata (#1)

Browse files

- Add description to card metadata (57557c5a403c062f802bd06c84b9e28e9887a2dd)

Files changed (1) hide show
  1. README.md +28 -4
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
  title: TER
3
- emoji: 🤗
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
@@ -8,10 +8,34 @@ sdk_version: 3.0.2
8
  app_file: app.py
9
  pinned: false
10
  tags:
11
- - evaluate
12
- - metric
13
- ---
 
 
 
 
 
 
 
 
 
 
 
14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  # Metric Card for TER
16
 
17
  ## Metric Description
 
1
  ---
2
  title: TER
3
+ emoji: 🤗
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
 
8
  app_file: app.py
9
  pinned: false
10
  tags:
11
+ - evaluate
12
+ - metric
13
+ description: >-
14
+ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to
15
+ quantify the edit operations that a
16
+
17
+ hypothesis requires to match a reference translation. We use the
18
+ implementation that is already present in sacrebleu
19
+
20
+ (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the
21
+ TERCOM implementation, which can be found
22
+
23
+ here: https://github.com/jhclark/tercom.
24
+
25
 
26
+ The implementation here is slightly different from sacrebleu in terms of the
27
+ required input format. The length of
28
+
29
+ the references and hypotheses lists need to be the same, so you may need to
30
+ transpose your references compared to
31
+
32
+ sacrebleu's required input format. See
33
+ https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
34
+
35
+
36
+ See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more
37
+ information.
38
+ ---
39
  # Metric Card for TER
40
 
41
  ## Metric Description