Spaces:
Running
Running
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""MASE - Mean Absolute Scaled Error Metric""" | |
import datasets | |
import numpy as np | |
from sklearn.metrics import mean_absolute_error | |
import evaluate | |
_CITATION = """\ | |
@article{HYNDMAN2006679, | |
title = {Another look at measures of forecast accuracy}, | |
journal = {International Journal of Forecasting}, | |
volume = {22}, | |
number = {4}, | |
pages = {679--688}, | |
year = {2006}, | |
issn = {0169-2070}, | |
doi = {https://doi.org/10.1016/j.ijforecast.2006.03.001}, | |
url = {https://www.sciencedirect.com/science/article/pii/S0169207006000239}, | |
author = {Rob J. Hyndman and Anne B. Koehler}, | |
} | |
""" | |
_DESCRIPTION = """\ | |
Mean Absolute Scaled Error (MASE) is the mean absolute error of the forecast values, divided by the mean absolute error of the in-sample one-step naive forecast. | |
""" | |
_KWARGS_DESCRIPTION = """ | |
Args: | |
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Estimated target values. | |
references: array-like of shape (n_samples,) or (n_samples, n_outputs) | |
Ground truth (correct) target values. | |
training: array-like of shape (n_train_samples,) or (n_train_samples, n_outputs) | |
In sample training data for naive forecast. | |
periodicity: int, default=1 | |
Seasonal periodicity of training data. | |
sample_weight: array-like of shape (n_samples,), default=None | |
Sample weights. | |
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" | |
Defines aggregating of multiple output values. Array-like value defines weights used to average errors. | |
"raw_values" : Returns a full set of errors in case of multioutput input. | |
"uniform_average" : Errors of all outputs are averaged with uniform weight. | |
Returns: | |
mase : mean absolute scaled error. | |
If multioutput is "raw_values", then mean absolute percentage error is returned for each output separately. If multioutput is "uniform_average" or an ndarray of weights, then the weighted average of all output errors is returned. | |
MASE output is non-negative floating point. The best value is 0.0. | |
Examples: | |
>>> mase_metric = evaluate.load("mase") | |
>>> predictions = [2.5, 0.0, 2, 8, 1.25] | |
>>> references = [3, -0.5, 2, 7, 2] | |
>>> training = [5, 0.5, 4, 6, 3, 5, 2] | |
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training) | |
>>> print(results) | |
{'mase': 0.18333333333333335} | |
If you're using multi-dimensional lists, then set the config as follows : | |
>>> mase_metric = evaluate.load("mase", "multilist") | |
>>> predictions = [[0, 2], [-1, 2], [8, -5]] | |
>>> references = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> training = [[0.5, 1], [-1, 1], [7, -6]] | |
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training) | |
>>> print(results) | |
{'mase': 0.18181818181818182} | |
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training, multioutput='raw_values') | |
>>> print(results) | |
{'mase': array([0.10526316, 0.28571429])} | |
>>> results = mase_metric.compute(predictions=predictions, references=references, training=training, multioutput=[0.3, 0.7]) | |
>>> print(results) | |
{'mase': 0.21935483870967742} | |
""" | |
class Mase(evaluate.Metric): | |
def _info(self): | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=datasets.Features(self._get_feature_types()), | |
reference_urls=["https://otexts.com/fpp3/accuracy.html#scaled-errors"], | |
) | |
def _get_feature_types(self): | |
if self.config_name == "multilist": | |
return { | |
"predictions": datasets.Sequence(datasets.Value("float")), | |
"references": datasets.Sequence(datasets.Value("float")), | |
} | |
else: | |
return { | |
"predictions": datasets.Value("float"), | |
"references": datasets.Value("float"), | |
} | |
def _compute( | |
self, | |
predictions, | |
references, | |
training, | |
periodicity=1, | |
sample_weight=None, | |
multioutput="uniform_average", | |
): | |
y_pred_naive = training[:-periodicity] | |
mae_naive = mean_absolute_error(training[periodicity:], y_pred_naive, multioutput=multioutput) | |
mae_score = mean_absolute_error( | |
references, | |
predictions, | |
sample_weight=sample_weight, | |
multioutput=multioutput, | |
) | |
epsilon = np.finfo(np.float64).eps | |
mase_score = mae_score / np.maximum(mae_naive, epsilon) | |
return {"mase": mase_score} | |