Spaces:
Sleeping
Sleeping
import pandas as pd | |
context_data = pd.read_csv("drugs_side_effects_drugs_com.csv") | |
import os | |
from langchain_groq import ChatGroq | |
llm = ChatGroq(model="llama-3.1-70b-versatile",api_key=os.environ.get("GROQ_API_KEY")) | |
## Embedding model! | |
from langchain_huggingface import HuggingFaceEmbeddings | |
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1") | |
# create vector store! | |
from langchain_chroma import Chroma | |
vectorstore = Chroma( | |
collection_name="medical_dataset_store", | |
embedding_function=embed_model, | |
) | |
# add data to vector nstore | |
vectorstore.add_texts(context_data) | |
retriever = vectorstore.as_retriever() | |
from langchain_core.prompts import PromptTemplate | |
template = ("""You are a medical expert. | |
Use the provided context to answer the question. | |
If you don't know the answer, say so. Explain your answer in detail. | |
Do not discuss the context in your response; just provide the answer directly. | |
Context: {context} | |
Question: {question} | |
Answer:""") | |
rag_prompt = PromptTemplate.from_template(template) | |
from langchain_core.output_parsers import StrOutputParser | |
from langchain_core.runnables import RunnablePassthrough | |
rag_chain = ( | |
{"context": retriever, "question": RunnablePassthrough()} | |
| rag_prompt | |
| llm | |
| StrOutputParser() | |
) | |
import gradio as gr | |
def rag_memory_stream(message, history): | |
partial_text = "" | |
for new_text in rag_chain.stream(message): | |
partial_text += new_text | |
yield partial_text | |
greetingsmessage = """Hello! Welcome to MediGuide ChatBot. I'm here to provide you with quick and accurate information on medical drugs. | |
Whether you need details on usage, side effects , etc feel free to ask. Let's enhance patient care together!""" | |
initial_history = [("", greetingsmessage)] | |
title = "MediGuide ChatBot" | |
demo = gr.ChatInterface(fn=rag_memory_stream, | |
type="messages", | |
title=title, | |
description=description, | |
fill_height=True, | |
examples=examples, | |
theme="glass", | |
) | |
# it should be gr.ChatInterface not gr.Interface, I made this pull request. You can continue work on the greetingmessage. | |
#demo = gr.Interface( | |
# title=title, | |
# fn=rag_memory_stream, | |
# inputs=[ | |
# gr.Chatbot(value=initial_history, label="Chat History"),"text" | |
# ], | |
# outputs=gr.Chatbot(label="Chat History"), | |
# allow_flagging="never", | |
# fill_height=True, | |
# theme="glass", | |
#) | |
if __name__ == "__main__": | |
demo.launch() | |