Spaces:
Sleeping
Sleeping
File size: 4,853 Bytes
228b1c6 48de789 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 ace1ad2 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 1e2257e 228b1c6 b5f0ed5 228b1c6 b5f0ed5 e7cf734 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 2a47ad5 b5f0ed5 2a47ad5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 228b1c6 b5f0ed5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import pandas as pd
import streamlit as st
import plotly.graph_objects as go
df = pd.read_excel("result.xlsx")
def get_lat_lon(row):
row = eval(row['result_dadata'])[0]
lat = row['geo_lat']
lon = row['geo_lon']
adress = row['result']
return lat, lon, adress
def get_colors(row):
if row > 10000:
return 'red'
elif row <= 10000 and row > 4000:
return 'blue'
elif row <= 4000 and row > 2000:
return 'yellow'
# elif row <= 2000 and row > 1000:
# return 'green'
# elif row <= 200 and row > 100:
# return 'purple'
# elif row <= 100 and row > 30:
# return 'orange'
else:
return 'black'
df[['lat', 'lon', 'adress']] = df.apply(get_lat_lon, axis=1, result_type='expand')
viz_df = df[['lpu_name','lat', 'lon', 'adress', 'MT_SUM_RUR']].copy()
viz_df['MT_SUM_RUR'] = viz_df['MT_SUM_RUR']/1000
viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
viz_df['colors'] = viz_df['MT_SUM_RUR'].apply(get_colors)
text_series ="Название клиники: "+ viz_df['lpu_name'] + "<br>" + "Адрес: " + viz_df["adress"] + "<br>" + "Сумма:" + viz_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
fig_bubbles_coords = go.Figure(data=go.Scattermapbox(
lat=viz_df['lat'],
lon=viz_df['lon'],
mode='markers',
marker=go.scattermapbox.Marker(
size=viz_df['MT_SUM_RUR'],
color='#38056c',
sizemode='area',
sizeref=5,
opacity=0.6
),
text=text_series,
))
fig_bubbles_coords.update_layout(
mapbox_style='open-street-map',
autosize=True,
hovermode='closest',
showlegend=False,
mapbox=dict(
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
zoom=9
),
width=900,
height=900
)
fig_bubbles = go.Figure(data=go.Scattermapbox(
lat=viz_df['lat'],
lon=viz_df['lon'],
mode='markers',
marker=go.scattermapbox.Marker(
size=viz_df['MT_SUM_RUR'],
color='#38056c',
sizemode='area',
sizeref=5,
opacity=0.6,
),
customdata=text_series,
))
fig_bubbles.update_layout(
mapbox_style='open-street-map',
autosize=True,
hovermode='closest',
showlegend=False,
mapbox=dict(
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
zoom=9
),
width=900,
height=900
)
fig_bubbles.update_traces(hovertemplate='<b>%{customdata}</b>')
fig_heatbar = go.Figure(data=go.Scattermapbox(
lat=viz_df['lat'],
lon=viz_df['lon'],
mode='markers',
marker=go.scattermapbox.Marker(
color=viz_df['MT_SUM_RUR'],
sizemode='area',
sizeref=5,
opacity=1,
colorscale='rdylbu', # Градиент цветов от светло-синего до темно-синего
colorbar=dict(title='MT_SUM_RUR')
),
customdata=text_series,
))
fig_heatbar.update_layout(
mapbox_style='open-street-map',
autosize=True,
hovermode='closest',
showlegend=False,
mapbox=dict(
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
zoom=9
),
width=900,
height=900
)
fig_heatbar.update_traces(hovertemplate='<b>%{customdata}</b>')
dct_colors = {'red':'больше 10000',
'blue':'10000-4000',
'yellow':'4000-2000',
# 'green':'400-200',
# 'purple':'200-100',
# 'orange':'100-30',
'black':'меньше 2000'}
colors = ['red',
'blue',
'yellow',
# 'green',
# 'purple',
# 'orange',
'black']
fig_colored = go.Figure()
for color in colors:
temp_df = viz_df[viz_df['colors'] == color]
text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["adress"] + "<br>" + "Сумма: " + temp_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
fig_colored.add_trace(go.Scattermapbox(
lat=temp_df['lat'],
lon=temp_df['lon'],
mode='markers',
marker=go.scattermapbox.Marker(
color=color,
sizemode='area',
sizeref=5,
opacity=1,
),
name=dct_colors[color],
customdata=text_series_temp,
))
fig_colored.update_layout(
mapbox_style='open-street-map',
autosize=True,
hovermode='closest',
showlegend=True,
mapbox=dict(
center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
zoom=9
),
width=900,
height=900
)
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')
viz_df = viz_df.rename(columns={"MT_SUM_RUR":"Сумма"})
st.dataframe(data=viz_df[['lpu_name', 'Сумма', 'adress']])
st.plotly_chart(fig_bubbles)
st.plotly_chart(fig_heatbar)
st.plotly_chart(fig_colored)
# %%
|