File size: 4,853 Bytes
228b1c6
 
 
 
48de789
228b1c6
 
 
 
 
 
 
 
 
b5f0ed5
228b1c6
b5f0ed5
228b1c6
b5f0ed5
228b1c6
b5f0ed5
ace1ad2
 
 
 
 
228b1c6
 
 
 
b5f0ed5
 
228b1c6
 
b5f0ed5
228b1c6
b5f0ed5
228b1c6
 
 
 
 
b5f0ed5
1e2257e
228b1c6
b5f0ed5
228b1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0ed5
e7cf734
228b1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0ed5
228b1c6
 
 
 
b5f0ed5
228b1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0ed5
 
 
 
 
 
 
2a47ad5
b5f0ed5
 
 
 
 
2a47ad5
228b1c6
 
 
 
 
b5f0ed5
228b1c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5f0ed5
228b1c6
b5f0ed5
228b1c6
 
 
b5f0ed5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import pandas as pd
import streamlit as st
import plotly.graph_objects as go

df = pd.read_excel("result.xlsx")
def get_lat_lon(row):
    row = eval(row['result_dadata'])[0]
    lat = row['geo_lat']
    lon = row['geo_lon']
    adress = row['result']

    return lat, lon, adress

def get_colors(row):
    if row > 10000:
        return 'red'
    elif row <= 10000 and row > 4000:
        return 'blue'
    elif row <= 4000 and row > 2000:
        return 'yellow'
    # elif row <= 2000 and row > 1000:
    #     return 'green'
    # elif row <= 200 and row > 100:
    #     return 'purple'
    # elif row <= 100 and row > 30:
    #     return 'orange'
    else:
        return 'black'

df[['lat', 'lon', 'adress']] = df.apply(get_lat_lon, axis=1, result_type='expand')
viz_df = df[['lpu_name','lat', 'lon', 'adress', 'MT_SUM_RUR']].copy()
viz_df['MT_SUM_RUR'] = viz_df['MT_SUM_RUR']/1000

viz_df[['lat','lon']] = viz_df[['lat','lon']].astype(float)
viz_df['colors'] = viz_df['MT_SUM_RUR'].apply(get_colors)

text_series ="Название клиники: "+ viz_df['lpu_name'] + "<br>" + "Адрес: " + viz_df["adress"] + "<br>" + "Сумма:" + viz_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
fig_bubbles_coords = go.Figure(data=go.Scattermapbox(
    lat=viz_df['lat'],
    lon=viz_df['lon'],
    mode='markers',
    marker=go.scattermapbox.Marker(
        size=viz_df['MT_SUM_RUR'],
        color='#38056c',
        sizemode='area',
        sizeref=5,
        opacity=0.6
    ),
    text=text_series,
))

fig_bubbles_coords.update_layout(
    mapbox_style='open-street-map',
    autosize=True,
    hovermode='closest',
    showlegend=False,
    mapbox=dict(
        center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
        zoom=9
    ),
    width=900,
    height=900
)

fig_bubbles = go.Figure(data=go.Scattermapbox(
    lat=viz_df['lat'],
    lon=viz_df['lon'],
    mode='markers',
    marker=go.scattermapbox.Marker(
        size=viz_df['MT_SUM_RUR'],
        color='#38056c',
        sizemode='area',
        sizeref=5,
        opacity=0.6,
    ),
    customdata=text_series,
))

fig_bubbles.update_layout(
    mapbox_style='open-street-map',
    autosize=True,
    hovermode='closest',
    showlegend=False,
    mapbox=dict(
        center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
        zoom=9
    ),
    width=900,
    height=900
)

fig_bubbles.update_traces(hovertemplate='<b>%{customdata}</b>')

fig_heatbar = go.Figure(data=go.Scattermapbox(
    lat=viz_df['lat'],
    lon=viz_df['lon'],
    mode='markers',
    marker=go.scattermapbox.Marker(
        color=viz_df['MT_SUM_RUR'],
        sizemode='area',
        sizeref=5,
        opacity=1,
        colorscale='rdylbu',  # Градиент цветов от светло-синего до темно-синего
        colorbar=dict(title='MT_SUM_RUR')
    ),
    customdata=text_series,
))

fig_heatbar.update_layout(
    mapbox_style='open-street-map',
    autosize=True,
    hovermode='closest',
    showlegend=False,
    mapbox=dict(
        center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
        zoom=9
    ),
    width=900,
    height=900
)

fig_heatbar.update_traces(hovertemplate='<b>%{customdata}</b>')

dct_colors = {'red':'больше 10000',
              'blue':'10000-4000',
              'yellow':'4000-2000',
            #   'green':'400-200',
            #   'purple':'200-100',
            #   'orange':'100-30',
              'black':'меньше 2000'}
colors = ['red',
          'blue', 
          'yellow', 
        #   'green',
        #   'purple',
        #   'orange',
          'black']

fig_colored = go.Figure()

for color in colors:
    temp_df = viz_df[viz_df['colors'] == color]
    text_series_temp = "Название клиники: "+ temp_df['lpu_name'] + "<br>" + "Адрес: " + temp_df["adress"] + "<br>" + "Сумма: " + temp_df['MT_SUM_RUR'].astype(str) + " тыс.руб"
    fig_colored.add_trace(go.Scattermapbox(
        lat=temp_df['lat'],
        lon=temp_df['lon'],
        mode='markers',
        marker=go.scattermapbox.Marker(
            color=color,
            sizemode='area',
            sizeref=5,
            opacity=1,
        ),
        name=dct_colors[color],
        customdata=text_series_temp,
    ))


fig_colored.update_layout(
    mapbox_style='open-street-map',
    autosize=True,
    hovermode='closest',
    showlegend=True,
    mapbox=dict(
        center=dict(lat=viz_df['lat'].mean(), lon=viz_df['lon'].mean()),
        zoom=9
    ),
    width=900,
    height=900
)
fig_colored.update_traces(hovertemplate='<b>%{customdata}</b>')

viz_df = viz_df.rename(columns={"MT_SUM_RUR":"Сумма"})

st.dataframe(data=viz_df[['lpu_name', 'Сумма', 'adress']])
st.plotly_chart(fig_bubbles)
st.plotly_chart(fig_heatbar)
st.plotly_chart(fig_colored)

# %%