File size: 5,212 Bytes
32bac05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.nn.utils import weight_norm
import numpy as np
def weights_init(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find("BatchNorm2d") != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def WNConv1d(*args, **kwargs):
return weight_norm(nn.Conv1d(*args, **kwargs))
def WNConvTranspose1d(*args, **kwargs):
return weight_norm(nn.ConvTranspose1d(*args, **kwargs))
class ResnetBlock(nn.Module):
def __init__(self, dim, dilation=1):
super().__init__()
self.block = nn.Sequential(
nn.Tanh(),
nn.ReflectionPad1d(dilation),
WNConv1d(dim, dim, kernel_size=3, dilation=dilation),
nn.Tanh(),
WNConv1d(dim, dim, kernel_size=1),
)
self.shortcut = WNConv1d(dim, dim, kernel_size=1)
def forward(self, x):
return self.shortcut(x) + self.block(x)
class Autoencoder(nn.Module):
def __init__(self, compress_ratios, ngf, n_residual_layers):
super().__init__()
self.encoder = self.makeEncoder(compress_ratios, ngf, n_residual_layers)
self.decoder = self.makeDecoder([r for r in reversed(compress_ratios)], ngf, n_residual_layers)
self.apply(weights_init)
def makeEncoder(self, ratios, ngf, n_residual_layers):
mult = 1
model = [
nn.ReflectionPad1d(3),
WNConv1d(1, ngf, kernel_size=7, padding=0),
nn.Tanh(),
]
# Downsample to neuralgram scale
for i, r in enumerate(ratios):
mult *= 2
for j in range(n_residual_layers-1, -1, -1):
model += [ResnetBlock(mult * ngf // 2, dilation=3 ** j)]
model += [
nn.Tanh(),
WNConv1d(
mult * ngf // 2,
mult * ngf,
kernel_size=r * 2,
stride=r,
padding=r // 2 + r % 2
),
]
model += [ nn.Tanh() ]
return nn.Sequential(*model)
def makeDecoder(self, ratios, ngf, n_residual_layers):
mult = int(2 ** len(ratios))
model = []
# Upsample to raw audio scale
for i, r in enumerate(ratios):
model += [
nn.Tanh(),
WNConvTranspose1d(
mult * ngf,
mult * ngf // 2,
kernel_size=r * 2,
stride=r,
padding=r // 2 + r % 2,
output_padding=r % 2
),
]
for j in range(n_residual_layers):
model += [ResnetBlock(mult * ngf // 2, dilation=3 ** j)]
mult //= 2
model += [
nn.Tanh(),
nn.ReflectionPad1d(3),
WNConv1d(ngf, 1, kernel_size=7, padding=0),
nn.Tanh(),
]
return nn.Sequential(*model)
def forward(self, x):
return self.decoder(self.encoder(x))
class NLayerDiscriminator(nn.Module):
def __init__(self, ndf, n_layers, downsampling_factor):
super().__init__()
model = nn.ModuleDict()
model["layer_0"] = nn.Sequential(
nn.ReflectionPad1d(7),
WNConv1d(1, ndf, kernel_size=15),
nn.Tanh(),
)
nf = ndf
stride = downsampling_factor
for n in range(1, n_layers + 1):
nf_prev = nf
nf = min(nf * stride, 1024)
model["layer_%d" % n] = nn.Sequential(
WNConv1d(
nf_prev,
nf,
kernel_size=stride * 10 + 1,
stride=stride,
padding=stride * 5,
groups=nf_prev // 4,
),
nn.Tanh(),
)
nf = min(nf * 2, 1024)
model["layer_%d" % (n_layers + 1)] = nn.Sequential(
WNConv1d(nf_prev, nf, kernel_size=5, stride=1, padding=2),
nn.Tanh(),
)
model["layer_%d" % (n_layers + 2)] = WNConv1d(
nf, 1, kernel_size=3, stride=1, padding=1
)
self.model = model
def forward(self, x):
results = []
for key, layer in self.model.items():
x = layer(x)
results.append(x)
return results
class Discriminator(nn.Module):
def __init__(self, num_D, ndf, n_layers, downsampling_factor):
super().__init__()
self.model = nn.ModuleDict()
for i in range(num_D):
self.model[f"disc_{i}"] = NLayerDiscriminator(
ndf, n_layers, downsampling_factor
)
self.downsample = nn.AvgPool1d(4, stride=2, padding=1, count_include_pad=False)
self.apply(weights_init)
def forward(self, x):
results = []
for key, disc in self.model.items():
results.append(disc(x))
x = self.downsample(x)
return results
|