File size: 5,212 Bytes
32bac05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import torch.nn as nn
import torch.nn.functional as F
import torch
from torch.nn.utils import weight_norm
import numpy as np


def weights_init(m):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(0.0, 0.02)
    elif classname.find("BatchNorm2d") != -1:
        m.weight.data.normal_(1.0, 0.02)
        m.bias.data.fill_(0)


def WNConv1d(*args, **kwargs):
    return weight_norm(nn.Conv1d(*args, **kwargs))


def WNConvTranspose1d(*args, **kwargs):
    return weight_norm(nn.ConvTranspose1d(*args, **kwargs))

class ResnetBlock(nn.Module):
    def __init__(self, dim, dilation=1):
        super().__init__()
        self.block = nn.Sequential(
            nn.Tanh(),
            nn.ReflectionPad1d(dilation),
            WNConv1d(dim, dim, kernel_size=3, dilation=dilation),
            nn.Tanh(),
            WNConv1d(dim, dim, kernel_size=1),
        )
        self.shortcut = WNConv1d(dim, dim, kernel_size=1)

    def forward(self, x):
        return self.shortcut(x) + self.block(x)
    
class Autoencoder(nn.Module):
    def __init__(self, compress_ratios, ngf, n_residual_layers):
        super().__init__()
        
        self.encoder = self.makeEncoder(compress_ratios, ngf, n_residual_layers)
        self.decoder = self.makeDecoder([r for r in reversed(compress_ratios)], ngf, n_residual_layers)
        
        self.apply(weights_init)
        
    def makeEncoder(self, ratios, ngf, n_residual_layers):
        mult = 1

        model = [
            nn.ReflectionPad1d(3),
            WNConv1d(1, ngf, kernel_size=7, padding=0),
            nn.Tanh(),
        ]
        
        # Downsample to neuralgram scale
        for i, r in enumerate(ratios):
            mult *= 2
            
            for j in range(n_residual_layers-1, -1, -1):
                model += [ResnetBlock(mult * ngf // 2, dilation=3 ** j)]
                
            model += [
                nn.Tanh(),
                WNConv1d(
                    mult * ngf // 2,
                    mult * ngf,
                    kernel_size=r * 2,
                    stride=r,
                    padding=r // 2 + r % 2
                ),
            ]

        model += [ nn.Tanh() ]
        
        return nn.Sequential(*model)
    def makeDecoder(self, ratios, ngf, n_residual_layers):
        mult = int(2 ** len(ratios))

        model = []

        # Upsample to raw audio scale
        for i, r in enumerate(ratios):
            model += [
                nn.Tanh(),
                WNConvTranspose1d(
                    mult * ngf,
                    mult * ngf // 2,
                    kernel_size=r * 2,
                    stride=r,
                    padding=r // 2 + r % 2,
                    output_padding=r % 2
                ),
            ]

            for j in range(n_residual_layers):
                model += [ResnetBlock(mult * ngf // 2, dilation=3 ** j)]

            mult //= 2

        model += [
            nn.Tanh(),
            nn.ReflectionPad1d(3),
            WNConv1d(ngf, 1, kernel_size=7, padding=0),
            nn.Tanh(),
        ]

        return nn.Sequential(*model)
    
    def forward(self, x):
        return self.decoder(self.encoder(x))

class NLayerDiscriminator(nn.Module):
    def __init__(self, ndf, n_layers, downsampling_factor):
        super().__init__()
        model = nn.ModuleDict()

        model["layer_0"] = nn.Sequential(
            nn.ReflectionPad1d(7),
            WNConv1d(1, ndf, kernel_size=15),
            nn.Tanh(),
        )

        nf = ndf
        stride = downsampling_factor
        for n in range(1, n_layers + 1):
            nf_prev = nf
            nf = min(nf * stride, 1024)

            model["layer_%d" % n] = nn.Sequential(
                WNConv1d(
                    nf_prev,
                    nf,
                    kernel_size=stride * 10 + 1,
                    stride=stride,
                    padding=stride * 5,
                    groups=nf_prev // 4,
                ),
                nn.Tanh(),
            )

        nf = min(nf * 2, 1024)
        model["layer_%d" % (n_layers + 1)] = nn.Sequential(
            WNConv1d(nf_prev, nf, kernel_size=5, stride=1, padding=2),
            nn.Tanh(),
        )

        model["layer_%d" % (n_layers + 2)] = WNConv1d(
            nf, 1, kernel_size=3, stride=1, padding=1
        )

        self.model = model

    def forward(self, x):
        results = []
        for key, layer in self.model.items():
            x = layer(x)
            results.append(x)
        return results


class Discriminator(nn.Module):
    def __init__(self, num_D, ndf, n_layers, downsampling_factor):
        super().__init__()
        self.model = nn.ModuleDict()
        for i in range(num_D):
            self.model[f"disc_{i}"] = NLayerDiscriminator(
                ndf, n_layers, downsampling_factor
            )

        self.downsample = nn.AvgPool1d(4, stride=2, padding=1, count_include_pad=False)
        self.apply(weights_init)

    def forward(self, x):
        results = []
        for key, disc in self.model.items():
            results.append(disc(x))
            x = self.downsample(x)
        return results