import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import pipeline, VitsModel, VitsTokenizer device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] # load translator to french en_fr_translator = pipeline("translation_en_to_fr") # load text-to-speech model = VitsModel.from_pretrained("facebook/mms-tts-fra") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") def synthesise(text): translation_to_french = en_fr_translator(text) french_text = translation_to_french[0]['translation_text'] inputs = tokenizer(french_text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs["waveform"] return speech # load text-to-speech checkpoint and speaker embeddings #processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") #model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) #vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) #embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") #speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) #def synthesise(text): # inputs = processor(text=text, return_tensors="pt") # speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) # return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Base](https://huggingface.co./openai/whisper-base) model for speech translation, Google's [T5](https://huggingface.co./t5-base) for translating from English to French and Facebook's [Massive Multilingual Speech (MMS)](https://huggingface.co./facebook/mms-tts) model for text-to-speech: ![Cascaded STST](https://huggingface.co./datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()