File size: 38,688 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
import streamlit as st
from PIL import Image
import time
import pandas as pd
import os 
import paramiko
import threading
import queue
import warnings
import re
import subprocess
from presets import Presets
import random
#from src import main



st.set_page_config(layout="wide")
st.warning('Note:  We are running out with GPU problems. The GNN models are currently running on CPU and some of the Framework capabilities may not be available. We apologise for the inconvenience and we will fix that soon.', icon="⚠️")

st.header('')
ovgu_img = Image.open('imgs/logo_ovgu_fin_en.jpg')
st.image(ovgu_img)
st.title("FairUP: a Framework for Fairness Analysis of Graph Neural Network-Based User Profiling Models. 🚀")

warnings.filterwarnings("ignore", category=DeprecationWarning)
warnings.filterwarnings("ignore", category=RuntimeWarning)
warnings.filterwarnings("ignore")

nba_columns = ['user_id', 'SALARY', 'AGE', 'MP', 'FG', 'FGA', 'FG%', '3P', '3PA',
       '3P%', '2P', '2PA', '2P%', 'eFG%', 'FT', 'FTA', 'FT%', 'ORB', 'DRB',
       'TRB', 'AST', 'STL', 'BLK', 'TOV', 'PF_x', 'POINTS', 'GP', 'MPG',
       'ORPM', 'DRPM', 'RPM', 'WINS_RPM', 'PIE', 'PACE', 'W', 'player_height',
       'player_weight', 'country', 'C', 'PF_y', 'PF-C', 'PG', 'SF', 'SG',
       'ATL', 'ATL/CLE', 'ATL/LAL', 'BKN', 'BKN/WSH', 'BOS', 'CHA', 'CHI',
       'CHI/OKC', 'CLE', 'CLE/DAL', 'CLE/MIA', 'DAL', 'DAL/BKN', 'DAL/PHI',
       'DEN', 'DEN/CHA', 'DEN/POR', 'DET', 'GS', 'GS/CHA', 'GS/SAC', 'HOU',
       'HOU/LAL', 'HOU/MEM', 'IND', 'LAC', 'LAL', 'MEM', 'MIA', 'MIL',
       'MIL/CHA', 'MIN', 'NO', 'NO/DAL', 'NO/MEM', 'NO/MIL', 'NO/MIN/SAC',
       'NO/ORL', 'NO/SAC', 'NY', 'NY/PHI', 'OKC', 'ORL', 'ORL/TOR', 'PHI',
       'PHI/OKC', 'PHX', 'POR', 'SA', 'SAC', 'TOR', 'UTAH', 'WSH']

pokec_columns = ['user_id',
 'public',
 'completion_percentage',
 'gender',
 'region',
 'AGE',
 'I_am_working_in_field',
 'spoken_languages_indicator',
 'anglicky',
 'nemecky',
 'rusky',
 'francuzsky',
 'spanielsky',
 'taliansky',
 'slovensky',
 'japonsky',
 'hobbies_indicator',
 'priatelia',
 'sportovanie',
 'pocuvanie hudby',
 'pozeranie filmov',
 'spanie',
 'kupalisko',
 'party',
 'cestovanie',
 'kino',
 'diskoteky',
 'nakupovanie',
 'tancovanie',
 'turistika',
 'surfovanie po webe',
 'praca s pc',
 'sex',
 'pc hry',
 'stanovanie',
 'varenie',
 'jedlo',
 'fotografovanie',
 'citanie',
 'malovanie',
 'chovatelstvo',
 'domace prace',
 'divadlo',
 'prace okolo domu',
 'prace v zahrade',
 'chodenie do muzei',
 'zberatelstvo',
 'hackovanie',
 'I_most_enjoy_good_food_indicator',
 'pri telke',
 'v dobrej restauracii',
 'pri svieckach s partnerom',
 'v posteli',
 'v prirode',
 'z partnerovho bruska',
 'v kuchyni pri stole',
 'pets_indicator',
 'pes',
 'mam psa',
 'nemam ziadne',
 'macka',
 'rybky',
 'mam macku',
 'mam rybky',
 'vtacik',
 'body_type_indicator',
 'priemerna',
 'vysportovana',
 'chuda',
 'velka a pekna',
 'tak trosku pri sebe',
 'eye_color_indicator',
 'hnede',
 'modre',
 'zelene',
 'hair_color_indicator',
 'cierne',
 'blond',
 'plave',
 'hair_type_indicator',
 'kratke',
 'dlhe',
 'rovne',
 'po plecia',
 'kucerave',
 'na jezka',
 'completed_level_of_education_indicator',
 'stredoskolske',
 'zakladne',
 'vysokoskolske',
 'ucnovske',
 'favourite_color_indicator',
 'modra',
 'cierna',
 'cervena',
 'biela',
 'zelena',
 'fialova',
 'zlta',
 'ruzova',
 'oranzova',
 'hneda',
 'relation_to_smoking_indicator',
 'nefajcim',
 'fajcim pravidelne',
 'fajcim prilezitostne',
 'uz nefajcim',
 'relation_to_alcohol_indicator',
 'pijem prilezitostne',
 'abstinent',
 'nepijem',
 'on_pokec_i_am_looking_for_indicator',
 'dobreho priatela',
 'priatelku',
 'niekoho na chatovanie',
 'udrzujem vztahy s priatelmi',
 'vaznu znamost',
 'sexualneho partnera',
 'dlhodoby seriozny vztah',
 'love_is_for_me_indicator',
 'nie je nic lepsie',
 'ako byt zamilovany(a)',
 'v laske vidim zmysel zivota',
 'v laske som sa sklamal(a)',
 'preto som velmi opatrny(a)',
 'laska je zakladom vyrovnaneho sexualneho zivota',
 'romanticka laska nie je pre mna',
 'davam prednost realite',
 'relation_to_casual_sex_indicator',
 'nedokazem mat s niekym sex bez lasky',
 'to skutocne zalezi len na okolnostiach',
 'sex mozem mat iba s niekym',
 'koho dobre poznam',
 'dokazem mat sex s kymkolvek',
 'kto dobre vyzera',
 'my_partner_should_be_indicator',
 'mojou chybajucou polovickou',
 'laskou mojho zivota',
 'moj najlepsi priatel',
 'absolutne zodpovedny a spolahlivy',
 'hlavne spolocensky typ',
 'clovek',
 'ktoreho uplne respektujem',
 'hlavne dobry milenec',
 'niekto',
 'marital_status_indicator',
 'slobodny(a)',
 'mam vazny vztah',
 'zenaty (vydata)',
 'rozvedeny(a)',
 'slobodny',
 'relation_to_children_indicator',
 'v buducnosti chcem mat deti',
 'I_like_movies_indicator',
 'komedie',
 'akcne',
 'horory',
 'serialy',
 'romanticke',
 'rodinne',
 'sci-fi',
 'historicke',
 'vojnove',
 'zahadne',
 'mysteriozne',
 'dokumentarne',
 'eroticke',
 'dramy',
 'fantasy',
 'muzikaly',
 'kasove trhaky',
 'umelecke',
 'alternativne',
 'I_like_watching_movie_indicator',
 'doma z gauca',
 'v kine',
 'u priatela',
 'priatelky',
 'I_like_music_indicator',
 'disko',
 'pop',
 'rock',
 'rap',
 'techno',
 'house',
 'hitparadovky',
 'sladaky',
 'hip-hop',
 'metal',
 'soundtracky',
 'punk',
 'oldies',
 'folklor a ludovky',
 'folk a country',
 'jazz',
 'klasicka hudba',
 'opery',
 'alternativa',
 'trance',
 'I_mostly_like_listening_to_music_indicator',
 'kedykolvek a kdekolvek',
 'na posteli',
 'pri chodzi',
 'na dobru noc',
 'na diskoteke',
 's partnerom',
 'vo vani',
 'v aute',
 'na koncerte',
 'pri sexe',
 'v praci',
 'the_idea_of_good_evening_indicator',
 'pozerat dobry film v tv',
 'pocuvat dobru hudbu',
 's kamaratmi do baru',
 'ist do kina alebo divadla',
 'surfovat na sieti a chatovat',
 'ist na koncert',
 'citat dobru knihu',
 'nieco dobre uvarit',
 'zhasnut svetla a meditovat',
 'ist do posilnovne',
 'I_like_specialties_from_kitchen_indicator',
 'slovenskej',
 'talianskej',
 'cinskej',
 'mexickej',
 'francuzskej',
 'greckej',
 'morske zivocichy',
 'vegetarianskej',
 'japonskej',
 'indickej',
 'I_am_going_to_concerts_indicator',
 'ja na koncerty nechodim',
 'zriedkavo',
 'my_active_sports_indicator',
 'plavanie',
 'futbal',
 'kolieskove korcule',
 'lyzovanie',
 'korculovanie',
 'behanie',
 'posilnovanie',
 'tenis',
 'hokej',
 'basketbal',
 'snowboarding',
 'pingpong',
 'auto-moto sporty',
 'bedminton',
 'volejbal',
 'aerobik',
 'bojove sporty',
 'hadzana',
 'skateboarding',
 'my_passive_sports_indicator',
 'baseball',
 'golf',
 'horolezectvo',
 'bezkovanie',
 'surfing',
 'I_like_books_indicator',
 'necitam knihy',
 'o zabave',
 'humor',
 'hry',
 'historicke romany',
 'rozpravky',
 'odbornu literaturu',
 'psychologicku literaturu',
 'literaturu pre rozvoj osobnosti',
 'cestopisy',
 'literaturu faktu',
 'poeziu',
 'zivotopisne a pamate',
 'pocitacovu literaturu',
 'filozoficku literaturu',
 'literaturu o umeni a architekture']

alibaba_columns = ['userid', 'final_gender_code', 'age_level', 'pvalue_level', 'occupation', 'new_user_class_level ', 'adgroup_id', 'clk', 'cate_id']
jd_columns = ['user_id',
 'gender',
 'age_range',
 'item_id',
 'cid1',
 'cid2',
 'cid3',
 'cid1_name',
 'cid2_name',
 'cid3_name',
 'brand_code',
 'price',
 'item_name',
 'seg_name']

##############################
# Preset
preset_question = st.radio("Do you want to apply a preset?", ("No", "Yes"))
with st.expander("More information"):
        st.write("A preset is a pre-defined parameter and model settings that can be choosen by the user to test the Framework easily.")
        st.write("Each preset option is defined by the model name and (in brackets) the dataset which it will be trained on.")
if preset_question == 'Yes':
    preset_list = ['FairGNN (NBA)', 'RHGN (Alibaba)', 'CatGCN (Alibaba)']
    preset = st.selectbox('Select Preset', preset_list)
    # implment presets as functions?
    if preset == 'FairGNN (NBA)':
        model_type, predict_attr, sens_attr = Presets.FairGNN_NBA()
    elif preset == 'RHGN (Alibaba)':
        model_type, predict_attr, sens_attr = Presets.RHGN_Alibaba()
    elif preset == 'CatGCN (Alibaba)':
        model_type, predict_attr, sens_attr = Presets.CatGCN_Alibaba()

    Presets.experiment_begin(model_type, predict_attr, sens_attr)

elif preset_question == 'No':
    dataset = st.selectbox("Which dataset do you want to evaluate?", ("NBA", "Pokec-z", "Alibaba", "JD"))
    if dataset == "NBA":
        dataset = 'nba'
        predict_attr = st.selectbox("Select prediction label", nba_columns)
        sens_attr = st.selectbox("Select sensitive attribute", nba_columns)
    elif dataset == "Pokec-z":
        dataset = 'pokec_z'
        predict_attr = st.selectbox("Select prediction label", pokec_columns)
        sens_attr = st.selectbox("Select sensitive attribute", pokec_columns)
    elif dataset == "Alibaba":
        dataset = 'alibaba'
        predict_attr = st.selectbox("Select prediction label", alibaba_columns)
        sens_attr = st.selectbox("Select sensitive attribute", alibaba_columns)
    elif dataset == 'JD':
        dataset = 'tecent'
        predict_attr = st.selectbox("Select prediction label", jd_columns)
        sens_attr = st.selectbox("Select sensitive attribute", jd_columns)


    # todo get all columns of the selected dataset and change this to a selectbox
    #predict_attr = st.text_input("Enter the prediction label")
    #sens_attr = st.text_input("Enter the senstive attribute")
    def read_output(stdout, queue):
        for line in stdout:
            queue.put(line.strip())

    def execute_command_fairness(dataset, sens_attr, predict_attr):
        with st.spinner("Loading..."):
            time.sleep(1)
            #ssh = paramiko.SSHClient()
            # Automatically add the server's host key (for the first connection only)
            #ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

            # Connect to the remote server
            #ssh.connect('141.44.31.206', username='abdelrazek', password='Mohamed')
            
            #if dataset == 'nba':
            #    stdin_new, stdout_new, stderr_new = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 main.py --calc_fairness True --dataset_name {} --dataset_path ../nba.csv --special_case True --sens_attr {} --predict_attr {} --type 1'.format(dataset, sens_attr, predict_attr), get_pty=True)
            #elif dataset == 'alibaba':
            #    stdin_new, stdout_new, stderr_new = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 main.py --calc_fairness True --dataset_name {} --dataset_path ../alibaba_small.csv --special_case True --sens_attr {} --predict_attr {} --type 1'.format(dataset, sens_attr, predict_attr), get_pty=True)
            #elif dataset == 'tecent':
            #    stdin_new, stdout_new, stderr_new = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 main.py --calc_fairness True --dataset_name {} --dataset_path ../JD_small.csv --special_case True --sens_attr {} --predict_attr {} --type 1'.format(dataset, sens_attr, predict_attr), get_pty=True)
            #elif dataset == 'pokec_z':
            #    stdin_new, stdout_new, stderr_new = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 main.py --calc_fairness True --dataset_name {} --dataset_path ../Master-Thesis-dev/region_job.csv --special_case True --sens_attr {} --predict_attr {} --type 1'.format(dataset, sens_attr, predict_attr), get_pty=True)
            #output_queue = queue.Queue()
            # start a thread to continuously read the output from the stdout object
            test = 'pwd'
            st.text(os.system(test))
            output_thread = threading.Thread(target=read_output, args=(stderr_new, output_queue))
            output_thread.start()

            # display the output in the Streamlit UI
            while True:
                try:
                    line = output_queue.get_nowait()
                    st.text(line)
                except queue.Empty:
                    if output_thread.is_alive():
                        continue
                    else:
                        break

            # wait for the thread to finish
            output_thread.join()
            # print the output to the console
            for line in stdout_new:
                print(line.strip())
                if "Dataset" in line:
                    st.text(line.strip())  
            ssh.close()

    fairness_evaluation = st.radio("Do you want to evaluate the dataset fairness?", ("No", "Yes"))
    with st.expander("More information"):
            st.write("Evaluate how fair the dataset, namely how much bias is affecting the dataset as a whole using the disparate impact metric.")
    if fairness_evaluation == "Yes":
        if st.button('Calculate Fairness'):
        # todo send command to server to compute fairness
        # then show fairness
        # add info box
        #dataset_fairness = st.write('Dataset Fairness: 1.57 (Fair)') 
            #execute_command_fairness(dataset, sens_attr, predict_attr)
            #with open('test_new.yml', 'r') as file:
            #    environment = file.read()
            #with open('test_tmp.yml', 'w') as file:
            #    file.write(environment.replace('prefix: /', ''))
            #os.system('conda env create --file test_new.yml --name streamlit_env_new')
            #os.system('conda activate streamlit_env_new')
            commands = os.popen('cd src && python main.py --calc_fairness True --dataset_name nba --dataset_path ./datasets/NBA/nba.csv --special_case True --sens_attr country --predict_attr SALARY --type 1').read()
            
            #output = os.popen('cd')
            #output = os.popen('python main.py --calc_fairness True --dataset_name nba --dataset_path ./datasets/NBA/nba.csv --special_case True --sens_attr country --predict_attr SALARY --type 1').read()
            #st.text(output)
            
            print(commands)
        

    #####################
    debias = st.radio("Do you want to apply debias approaches?", ("No", "Yes"))
    if "Yes" in debias:
        debias_approach = st.selectbox("Select which debias approach you want to apply", ["Sample", "Reweighting", "Disparate remover impact"])
        with st.expander("More information"):
            st.write("You can mitigate the bias using three pre-processing debaising approaches:")
            st.write("Sampling: Generates more data to overcome the bias between the different sensitive attributes and classes.")
            st.write("Reweighting Minimizing the bias in the dataset by assiging different weights to dataset tuples, for example giving the unfavorable sensntive attributes higher weights than favorable sensitive attributes")
            st.write("Disparate impact remover: Transforms the sensitive attribute features in a way that the correlation between the sensitive attribute features and the prediction class is reduced")




    #if dataset != None:
    #st.markdown("#### Select dataset")
    #uploaded_file = st.file_uploader("Select dataset")
        #dataset_path = st.text_input("", value="")

    model_type = st.multiselect("Select the models you want to train", ["FairGNN", "RHGN", "CatGCN"])

    if "RHGN" in model_type and "FairGNN" in model_type:
        st.markdown("### Enter the general parameters")
        seed = st.number_input("Enter the prefered seed number", value=0)
        
        #predict_attr = st.text_input("Enter the prediction label")
        #sens_attr = st.text_input("Enter the senstive attribute")


        st.markdown("### Enter the RHGN parameters")
        num_hidden = st.text_input("Enter the number of hidden layers", value=0)
        with st.expander("More information"):
            st.write("The number of hidden layers refers to the number of layers between the input layer and the output layer of a model.")
        lr_rhgn = st.number_input("Enter the learning rate for RHGN")
        with st.expander("More information"):
            st.write("Is a hyperparameter that controls the step size of the updates made to the weights during training. In other words, it determines how quickly the model learns from the data.")
        
        epochs_rhgn = st.number_input("Enter the number of epochs for RHGN", value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        
        clip = st.number_input("Enter the clip value", value=0)
        with st.expander("More information"):
            st.write("The clip number is a hyperparameter that determines the maximum value that the gradient can take. If the gradient exceeds this value, it is clipped (i.e., truncated to the maximum value).")
        
        

        st.markdown("### Enter the FairGNN parameters")
        lr_fairgnn = st.number_input("Enter the learning rate for FairGNN")
        with st.expander("More information"):
            st.write("Is a hyperparameter that controls the step size of the updates made to the weights during training. In other words, it determines how quickly the model learns from the data.")
        epochs_fairgnn = st.number_input("Enter the number of epochs for FairGNN", value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        sens_number = st.number_input("Enter the sens number", value=0)
        
        label_number = st.number_input("Enter the label number", value=0)
        
        num_hidden = st.number_input("Enter the hidden layer number" , value=0)
        with st.expander("More information"):
            st.write("The number of hidden layers refers to the number of layers between the input layer and the output layer of a model.")
        alpha = st.number_input("Enter alpha value", value=0)
        with st.expander("More information"):
            st.write("Refers to the regularization parameter that controls the amount of L2 regularization applied to the model's weights during the training process.")
        
        beta = st.number_input("Enter beta value", value=0)
        with st.expander("More information"):
            st.write("Refers to the momentum parameter that controls how much the optimizer should take into account the previous update when computing the current update to the model's weights during the training process.")
        

    if "RHGN" in model_type and "CatGCN" in model_type:
        st.markdown("### Enter the general parameters")
        seed = st.number_input("Enter the prefered seed number", value=0)
        #predict_attr = st.text_input("Enter the prediction label")
        #sens_attr = st.text_input("Enter the senstive attribute")

        st.markdown("### Enter the RHGN parameters")
        num_hidden = st.text_input("Enter the number of hidden layers")
        with st.expander("More information"):
            st.write("The number of hidden layers refers to the number of layers between the input layer and the output layer of a model.")
        lr_rhgn = st.number_input("Enter the learning rate")
        with st.expander("More information"):
            st.write("Is a hyperparameter that controls the step size of the updates made to the weights during training. In other words, it determines how quickly the model learns from the data.")
        epochs_rhgn = st.number_input("Enter the number of epochs", value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        clip = st.number_input("Enter the clip value", value=0)
        with st.expander("More information"):
            st.write("The clip number is a hyperparameter that determines the maximum value that the gradient can take. If the gradient exceeds this value, it is clipped (i.e., truncated to the maximum value).")

        st.markdown("### Enter the CatGCN parameters")
        weight_decay = st.number_input("Enter the weight decay value" )
        with st.expander("More information"):
            st.write("The parameters that controls the amount the weights will exponentially decay to zero.")
        lr_catgcn = st.number_input("Enter the learning rate")
        with st.expander("More information"):
            st.write("Is a hyperparameter that controls the step size of the updates made to the weights during training. In other words, it determines how quickly the model learns from the data.")
        epochs_catgcn = st.number_input("Enter the number of epochs", value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        diag_probe = st.number_input("Enter the diag probe value" , value=0)
        graph_refining = st.selectbox("Choose the graph refining approach", ("agc", "fignn", "none"))
        grn_units = st.number_input("Enter the grn units value" , value=0)
        bi_interaction = st.selectbox("Choose the bi-interaction approach", ("nfm", "none"))


    elif "RHGN" in model_type and len(model_type) == 1:
        st.markdown("### Enter the general paramaters")
        seed = st.number_input("Enter the prefered seed number", value=0)
        #lr = st.number_input("Enter the learning rate", value=0)
        #epochs = st.number_input("Enter the number of epochs", value=0)
        #predict_attr = st.text_input("Enter the prediction label")
        #sens_attr = st.text_input("Enter the senstive attribute")


        st.markdown("### Enter the RHGN parametrs")
        num_hidden = st.number_input("Enter the number of hidden layers", value=0)
        with st.expander("More information"):
            st.write("The number of hidden layers refers to the number of layers between the input layer and the output layer of a model.")
        lr_rhgn = st.number_input("Enter the learning rate")
        with st.expander("More information"):
            st.write("Is a hyperparameter that controls the step size of the updates made to the weights during training. In other words, it determines how quickly the model learns from the data.")
        
        epochs_rhgn = st.number_input("Enter the number of epochs for RHGN", value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        
        clip = st.number_input("Enter the clip value", value=0)
        with st.expander("More information"):
            st.write("The clip number is a hyperparameter that determines the maximum value that the gradient can take. If the gradient exceeds this value, it is clipped (i.e., truncated to the maximum value).")

    elif "FairGNN" in model_type and len(model_type) == 1:
        st.markdown("### Enter the general parameters")
        seed = st.number_input("Enter the prefered seed number" , value=0)
        #lr = st.number_input("Enter the learning rate" , value=0)
        #epochs = st.number_input("Enter the number of epochs" , value=0)
        #predict_attr = st.text_input("Enter the prediction label")
        #sens_attr = st.text_input("Enter the senstive attribute")


        st.markdown("### Enter the FairGNN parameters")
        lr_fairgnn = st.number_input("Enter the learning rate")
        epochs_fairgnn = st.number_input("Enter the number of epochs" , value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        sens_number =  st.number_input("Enter the sens number" , value=0)
        label_number = st.number_input("Enter the label number", value=0)
        num_hidden = st.number_input("Enter the hidden layer number" , value=0)
        with st.expander("More information"):
            st.write("The number of hidden layers refers to the number of layers between the input layer and the output layer of a model.")
        alpha = st.number_input("Enter alpha value" , value=0)
        with st.expander("More information"):
            st.write("Refers to the regularization parameter that controls the amount of L2 regularization applied to the model's weights during the training process.")
        beta = st.number_input("Enter beta value", value=0)
        with st.expander("More information"):
            st.write("Refers to the momentum parameter that controls how much the optimizer should take into account the previous update when computing the current update to the model's weights during the training process.")


    elif "CatGCN" in model_type and len(model_type) == 1:
        st.markdown("### Enter the general paramaters")
        seed = st.number_input("Enter the prefered seed number", value=0)
        #lr = st.number_input("Enter the learning rate" , value=0)
        #epochs = st.number_input("Enter the number of epochs" , value=0)
        #predict_attr = st.text_input("Enter the prediction label")
        #sens_attr = st.text_input("Enter the senstive attribute")

        st.markdown("### Enter the CatGCN parameters")
        weight_decay = st.number_input("Enter the weight decay value")
        with st.expander("More information"):
            st.write("The parameters that controls the amount the weights will exponentially decay to zero.")
        lr_catgcn = st.number_input("Enter the learning rate")
        with st.expander("More information"):
            st.write("Is a hyperparameter that controls the step size of the updates made to the weights during training. In other words, it determines how quickly the model learns from the data.")
        epochs_catgcn = st.number_input("Enter the number of epochs" , value=0)
        with st.expander("More information"):
            st.write("Refers to a single pass through the entire training dataset during the training of a model. In other words, an epoch is a measure of the number of times the model has seen the entire training data.")
        diag_probe = st.number_input("Enter the diag probe value" , value=0)
        graph_refining = st.multiselect("Choose the graph refining approach", ["agc", "fignn", "none"])
        grn_units = st.number_input("Enter the grn units value" , value=0)
        bi_interaction = st.multiselect("Choose the bi-interaction approach", ["nfm", "none"])



    if len(model_type) != 0:
        if st.button("Begin experiment"):
            with st.spinner("Loading..."):
                time.sleep(2)
                if predict_attr == 'final_gender_code':
                    predict_attr == 'bin_gender'
                if sens_attr == 'age_level':
                    sens_attr == 'bin_age'

                ###################################################################################################################
                ssh = paramiko.SSHClient()
                port = 443
                # Automatically add the server's host key (for the first connection only)
                ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy())

                # Connect to the remote server
                ssh.connect('https://dtdh206.cs.uni-magdeburg.de:443')
                #ssh.connect('141.44.31.206', port=443, banner_timeout=200)
                stdin, stdout, stderr =  ssh.exec_command('ls')
                print(stdout)

                if len(model_type) == 1 and 'FairGNN' in model_type:
                    stdin, stdout, stderr = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 -W ignore main.py --seed {} --epoch {} --model GCN --sens_number {} --num_hidden {} --acc 0.20 --roc 0.20 --alpha {} --beta {} --dataset_name {} --dataset_path ../nba.csv --dataset_user_id_name user_id --model_type FairGNN --type 1 --sens_attr {} --predict_attr {} --label_number 100 --no-cuda True --special_case True --neptune_project mohamed9/FairGNN-Alibaba --neptune_token eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI0Nzc0MTIzMy0xMjRhLTQ0OGQtODE5Mi1mZjE3MDE0MGFhOGMifQ=='.format(seed, epochs_fairgnn, sens_number, num_hidden, alpha, beta, dataset, sens_attr, predict_attr))
                if len(model_type) == 1 and 'RHGN' in model_type:
                    stdin, stdout, stderr = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 -W ignore main.py --seed {} --gpu 0 --dataset_path ../ --max_lr {} --num_hidden {} --clip {} --epochs {} --label {} --sens_attr {} --type 1 --model_type RHGN --dataset_name {} --dataset_user_id_name userid --special_case True --neptune_project mohamed9/FairGNN-Alibaba --neptune_token eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI0Nzc0MTIzMy0xMjRhLTQ0OGQtODE5Mi1mZjE3MDE0MGFhOGMifQ=='.format(seed, lr_rhgn, num_hidden, clip, epochs_rhgn, predict_attr, sens_attr, dataset))
                # CatGCN
                if len(model_type) == 1 and 'CatGCN' in model_type:
                    stdin, stdout, stderr = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 -W ignore main.py --seed {} --gpu 0 --lr {} --weight_decay {} --dropout 0.1 --diag-probe {} --graph-refining {} --aggr-pooling mean --grn_units {} --bi-interaction {} --nfm-units none --graph-layer pna --gnn-hops 1 --gnn-units none --aggr-style sum --balance-ratio 0.7 --sens_attr {} --label {} --dataset_name {} --dataset_path ../ --type 1 --model_type CatGCN --dataset_user_id_name userid --alpha 0.5 --special_case True --neptune_project mohamed9/FairGNN-Alibaba --neptune_token eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI0Nzc0MTIzMy0xMjRhLTQ0OGQtODE5Mi1mZjE3MDE0MGFhOGMifQ=='.format(seed, lr_catgcn, weight_decay, diag_probe, graph_refining, grn_units, bi_interaction, sens_attr, predict_attr, dataset))

                # FairGNN and RHGN
                if len(model_type) == 2 and 'FairGNN' in model_type and 'RHGN' in model_type:
                    if predict_attr == 'final_gender_code':
                        label = 'bin_gender'
                    if sens_attr == 'age_level':
                        sens_attr_rhgn = 'bin_age'
                    stdin, stdout, stderr = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 -W ignore main.py --seed {} --epochs {} --model GCN --sens_number {} --num_hidden {} --acc 0.20 --roc 0.20 --alpha {} --beta {} --dataset_name {} --dataset_path ../nba.csv --dataset_user_id_name user_id --model_type FairGNN RHGN --type 1 --sens_attr {} --label {} --predict_attr {} --label_number 100 --no-cuda True --max_lr {} --clip {} --epochs_rhgn {}  --special_case True --neptune_project mohamed9/FairGNN-Alibaba --neptune_token eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI0Nzc0MTIzMy0xMjRhLTQ0OGQtODE5Mi1mZjE3MDE0MGFhOGMifQ=='.format(seed, epochs_fairgnn, sens_number, num_hidden, alpha, beta, dataset, sens_attr, predict_attr, predict_attr, lr_rhgn, clip, epochs_rhgn))
                    print('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && /home/abdelrazek/anaconda3/envs/test/bin/python3 -W ignore main.py --seed {} --epochs {} --model GCN --sens_number {} --num_hidden {} --acc 0.20 --roc 0.20 --alpha {} --beta {} --dataset_name {} --dataset_path ../nba.csv --dataset_user_id_name user_id --model_type FairGNN RHGN --type 1 --sens_attr {} --label {} --predict_attr {} --label_number 100 --no-cuda True --max_lr {} --clip {} --epochs_rhgn {}  --special_case True --neptune_project mohamed9/FairGNN-Alibaba --neptune_token eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiOiI0Nzc0MTIzMy0xMjRhLTQ0OGQtODE5Mi1mZjE3MDE0MGFhOGMifQ=='.format(seed, epochs_fairgnn, sens_number, num_hidden, alpha, beta, dataset, sens_attr, predict_attr, predict_attr, lr_rhgn, clip, epochs_rhgn))
                    #stdin, stdout, stderr = ssh.exec_command('cd /home/abdelrazek/framework-for-fairness-analysis-and-mitigation-main && ls')
                    
                output_queue = queue.Queue()
                output_thred = threading.Thread(target=read_output, args=(stderr, output_queue))
                output_thred.start()
                
                while True:
                    try:
                        line = output_queue.get_nowait()
                        #st.text(line)
                    except queue.Empty:
                        if output_thred.is_alive():
                            continue
                        else:
                            break

                output_thred.join()
                all_output = []
                for line in stdout:
                    print(line.strip())
                    #st.text(line.strip())
                    if "Test_final:" in line and 'FairGNN' in model_type:
                        result = line.strip()
                        #st.text(result)
                    if 'accuracy' in line and 'RHGN' in model_type:
                        #st.text(line.strip())
                        line = line.strip() + 'end'
                        acc = re.search('accuracy                         (.+?)end', line)
                        acc = acc.group(1)
                        acc_rhgn = acc.split()[0]
                    if 'F1 score:' in line:
                        f1 = '.'.join(line.split('.')[0:2])
                        f1_rhgn = '{:.3f}'.format(float(f1.split()[-1]))
                    if 'Statistical Parity Difference (SPD):' in line:
                        spd_rhgn = '{:.3f}'.format(float(line.split()[-1]))

                    if 'Equal Opportunity Difference (EOD):' in line:
                        eod_rhgn = '{:.3f}'.format(float(line.split()[-1]))

                    if 'Overall Accuracy Equality Difference (OAED):' in line:
                        oaed_rhgn = '{:.3f}'.format(float(line.split()[-1]))

                    if 'Treatment Equality Difference (TED):' in line:
                        ted_rhgn = '{:.3f}'.format(float(line.split()[-1]))
                    #all_output.append(line.strip())
                # Close the connection
                ssh.close()

            st.success("Done!")

            
            st.markdown("## Training Results:")
            print(len(model_type))
            print(model_type)
            if len(model_type) == 1 and 'FairGNN' in model_type:
                st.text(result)
                acc = re.search('accuracy:(.+?)roc', result)
                f1 = re.search('F1:(.+?)acc_sens', result)

                spd = re.search('parity:(.+?)equality', result)
                eod = re.search('equality:(.+?)oaed', result)
                oaed = re.search('oaed:(.+?)treatment equality', result)
                ted = re.search('treatment equality(.+?)end', result)
                data = {'Model': [model_type],
                    'Accuracy': [acc.group(1)],
                    'F1': [f1.group(1)],
                    'SPD': [spd.group(1)],
                    'EOD': [eod.group(1)],
                    'OAED': [oaed.group(1)],
                    'TED': [ted.group(1)]
                    }
                
            elif len(model_type) == 1 and 'RHGN' in model_type:
                #print('all_output:', all_output)
                data =  {'Model': [model_type],
                'Accuracy': [acc_rhgn],
                'F1': [f1_rhgn],
                'SPD': [spd_rhgn],
                'EOD': [eod_rhgn],
                'OAED': [oaed_rhgn],
                'TED': [ted_rhgn]
                }

            elif len(model_type) == 2 and 'RHGN' in model_type and 'FairGNN' in model_type:

                acc = re.search('a:(.+?)roc', result)
                f1 = re.search('F1:(.+?)acc_sens', result)

                spd = re.search('parity:(.+?)equality', result)
                eod = re.search('equality:(.+?)oaed', result)
                oaed = re.search('oaed:(.+?)treatment equality', result)
                ted = re.search('treatment equality(.+?)end', result)

                ind_fairgnn = model_type.index('FairGNN')
                ind_rhgn = model_type.index('RHGN')
                data =  {'Model': [model_type[ind_fairgnn], model_type[ind_rhgn]],
                'Prediction label': [predict_attr, predict_attr],
                'Sensitive attribute': [sens_attr, sens_attr],
                'Accuracy': [acc.group(1), acc_rhgn],
                'F1': [f1.group(1), f1_rhgn],
                'SPD': [spd.group(1), spd_rhgn],
                'EOD': [eod.group(1), eod_rhgn],
                'OAED': [oaed.group(1), oaed_rhgn],
                'TED': [ted.group(1), ted_rhgn]
                }

            df = pd.DataFrame(data)

            #st.dataframe(df, width=5000)
            # set the display options for the DataFrame
            pd.set_option("display.max_columns", None)
            pd.set_option("display.width", 100)

            

            # display the DataFrame in Streamlit
            st.write(df)

        #st.write("The logs of the experiment can be found at: mohamed9/Experiments-RHGN-CatGCN-Alibaba")
        #st.markdown("The logs of the experiment can be found at: **mohamed9/Experiments-RHGN-FairGNN-Alibaba**")