mechanical / app.py
engrharis's picture
Create app.py
4f5520c verified
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import open3d as o3d
import numpy as np
import cadquery as cq
# Load the tokenizer from Qwen2-1.5B and model weights from filapro/cad-recode
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("filapro/cad-recode", trust_remote_code=True)
# Set device (GPU if available, CPU otherwise)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print(f"Model loaded on {device}")
@st.cache(allow_output_mutation=True)
def load_point_cloud(file):
"""Loads a point cloud from a uploaded file."""
if not file:
return None
if file.type not in ("application/octet-stream", "text/plain"):
st.error("Please upload a point cloud file (.pcd, .xyz, etc.)")
return None
try:
point_cloud = o3d.io.read_point_cloud(file)
except Exception as e:
st.error(f"Error loading point cloud: {e}")
return None
return point_cloud
def prepare_input_data(point_cloud):
"""Prepares point cloud data for model input."""
if not point_cloud:
return None
point_cloud_array = np.asarray(point_cloud.points).flatten()
input_text = " ".join(map(str, point_cloud_array))
return input_text
def generate_cad_code(input_text):
"""Runs inference and decodes generated output."""
if not input_text:
return None
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=512)
inputs = {key: val.to(device) for key, val in inputs.items()}
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id)
cad_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
return cad_code
def generate_cad_model(cad_code):
"""Generates a CAD model from the provided code."""
if not cad_code:
return None
try:
# Execute CAD code using CadQuery library
exec(cad_code)
cad_model = cq.Workplane("XY").val()
except Exception as e:
st.error(f"Error generating CAD model: {e}")
return None
return cad_model
def main():
"""Streamlit app for point cloud to CAD code conversion."""
st.title("Point Cloud to CAD Code Converter")
st.write("This app uses the filapro/cad-recode model to generate Python code for a 3D CAD model from your point cloud data.")
uploaded_file = st.file_uploader("Upload Point Cloud File")
point_cloud = load_point_cloud(uploaded_file)
if point_cloud:
input_text = prepare_input_data(point_cloud)
cad_code = generate_cad_code(input_text)
if cad_code:
st.success("Generated Python CAD Code:")
st.code(cad_code)
cad_model = generate_cad_model(cad_code)
if cad_model:
# Optionally, use a 3D visualization library like trimesh
# to display the generated CAD model (not included)
st.success("Generated CAD Model (Visualization not yet implemented)")
# st.write(cad_model) # Replace with visualization code
if __name__ == "__main__":
main()