import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt from transformers import pipeline import plotly.express as px # Initialize the Hugging Face model for expense categorization (use zero-shot classification) expense_classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli") # Batch categorization function for efficiency def categorize_transaction_batch(descriptions): candidate_labels = ["Groceries", "Entertainment", "Rent", "Utilities", "Dining", "Transportation", "Shopping", "Others"] return [expense_classifier(description, candidate_labels)["labels"][0] for description in descriptions] # Function to process the uploaded CSV and generate visualizations def process_expenses(file): # Read CSV data df = pd.read_csv(file.name) # Check if required columns are present if 'Date' not in df.columns or 'Description' not in df.columns or 'Amount' not in df.columns: return "CSV file should contain 'Date', 'Description', and 'Amount' columns." # Categorize the expenses (using batch processing to minimize model calls) df['Category'] = categorize_transaction_batch(df['Description'].tolist()) # Create visualizations: # 1. Pie chart for Category-wise spending category_spending = df.groupby("Category")['Amount'].sum() fig1 = px.pie(category_spending, names=category_spending.index, values=category_spending.values, title="Category-wise Spending") # 2. Monthly spending trends (Line plot) df['Date'] = pd.to_datetime(df['Date']) df['Month'] = df['Date'].dt.to_period('M') monthly_spending = df.groupby('Month')['Amount'].sum() fig2 = px.line(monthly_spending, x=monthly_spending.index, y=monthly_spending.values, title="Monthly Spending Trends") # 3. Budget vs Actual Spending (Bar chart) category_list = df['Category'].unique() budget_dict = {category: 500 for category in category_list} # Default budget is 500 for each category budget_spending = {category: [budget_dict[category], category_spending.get(category, 0)] for category in category_list} budget_df = pd.DataFrame(budget_spending, index=["Budget", "Actual"]).T fig3 = px.bar(budget_df, x=budget_df.index, y=["Budget", "Actual"], title="Budget vs Actual Spending") # 4. Suggested savings (only calculate if over budget) savings_tips = [] for category, actual in category_spending.items(): if actual > budget_dict.get(category, 500): savings_tips.append(f"- **{category}**: Over budget by ${actual - budget_dict.get(category, 500)}. Consider reducing this expense.") return df.head(), fig1, fig2, fig3, savings_tips # Gradio interface definition inputs = gr.File(label="Upload Expense CSV") outputs = [ gr.Dataframe(label="Categorized Expense Data"), gr.Plot(label="Category-wise Spending (Pie Chart)"), gr.Plot(label="Monthly Spending Trends (Line Chart)"), gr.Plot(label="Budget vs Actual Spending (Bar Chart)"), gr.Textbox(label="Savings Tips") ] # Launch Gradio interface gr.Interface( fn=process_expenses, inputs=inputs, outputs=outputs, live=True, title="Smart Expense Tracker", description="Upload your CSV of transactions, categorize them, and view insights like spending trends and budget analysis." ).launch()