Update app.py
Browse files
app.py
CHANGED
@@ -1,93 +1,32 @@
|
|
1 |
-
import streamlit as st
|
2 |
import pandas as pd
|
3 |
import matplotlib.pyplot as plt
|
4 |
-
from transformers import pipeline
|
5 |
import plotly.express as px
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
qa_model = pipeline('question-answering', model='distilbert-base-uncased-distilled-squad')
|
10 |
-
|
11 |
-
# List of possible expense categories
|
12 |
-
categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation", "Salary"]
|
13 |
-
|
14 |
-
# Function to categorize transactions
|
15 |
-
def categorize_expense(description):
|
16 |
-
result = expense_classifier(description, candidate_labels=categories)
|
17 |
-
return result['labels'][0] # Choose the most probable category
|
18 |
-
|
19 |
-
# Streamlit UI
|
20 |
-
st.title("Smart Expense Tracker")
|
21 |
-
st.write("""
|
22 |
-
Upload a CSV file containing your transaction data, and this app will categorize your expenses, visualize trends,
|
23 |
-
and provide insights on your spending habits.
|
24 |
-
""")
|
25 |
|
26 |
-
# Upload CSV file
|
27 |
-
uploaded_file = st.file_uploader("Upload your CSV file", type=["csv"])
|
28 |
if uploaded_file is not None:
|
|
|
29 |
df = pd.read_csv(uploaded_file)
|
30 |
|
31 |
-
# Display the first few rows of the
|
32 |
-
st.
|
33 |
-
st.dataframe(df.head())
|
34 |
-
|
35 |
-
# Check if 'Description', 'Amount', and 'Date' columns exist in the file
|
36 |
-
if 'Description' in df.columns and 'Amount' in df.columns and 'Date' in df.columns:
|
37 |
-
# Categorize expenses
|
38 |
-
df['Category'] = df['Description'].apply(categorize_expense)
|
39 |
-
|
40 |
-
# Visualizations
|
41 |
-
st.subheader("Expense Distribution by Category (Pie Chart)")
|
42 |
-
category_expenses = df.groupby('Category')['Amount'].sum()
|
43 |
-
fig1 = px.pie(category_expenses, names=category_expenses.index, values=category_expenses.values, title="Category-wise Spending")
|
44 |
-
st.plotly_chart(fig1)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
monthly_expenses = df.groupby('Month')['Amount'].sum()
|
50 |
-
st.subheader("Monthly Spending Trends")
|
51 |
-
fig2 = px.line(monthly_expenses, x=monthly_expenses.index, y=monthly_expenses.values, title="Monthly Spending")
|
52 |
-
st.plotly_chart(fig2)
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
"Groceries": 300,
|
57 |
-
"Rent": 1000,
|
58 |
-
"Utilities": 150,
|
59 |
-
"Entertainment": 100,
|
60 |
-
"Dining": 150,
|
61 |
-
"Transportation": 120,
|
62 |
-
}
|
63 |
-
budget_df = pd.DataFrame({
|
64 |
-
'Actual': monthly_expenses,
|
65 |
-
'Budget': [sum(budgets.values())] * len(monthly_expenses)
|
66 |
-
})
|
67 |
-
st.subheader("Monthly Spending vs Budget")
|
68 |
-
fig3 = px.bar(budget_df, x=budget_df.index, y=["Actual", "Budget"], title="Budget vs Actual Spending")
|
69 |
-
st.plotly_chart(fig3)
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
for category, actual in category_expenses.items():
|
76 |
-
if actual > budgets.get(category, 0):
|
77 |
-
savings_tips.append(f"- **{category}**: Over budget by ${actual - budgets.get(category, 0)}. Consider reducing this expense.")
|
78 |
-
if savings_tips:
|
79 |
-
for tip in savings_tips:
|
80 |
-
st.write(tip)
|
81 |
-
else:
|
82 |
-
st.write("No categories exceeded their budget.")
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
question = st.text_input("Ask a question about your expenses (e.g., 'How much did I spend on groceries?')")
|
87 |
-
if question:
|
88 |
-
knowledge_base = "\n".join(df.apply(lambda row: f"Description: {row['Description']}, Amount: {row['Amount']}, Category: {row['Category']}", axis=1))
|
89 |
-
answer = qa_model(question=question, context=knowledge_base)
|
90 |
-
st.write(f"Answer: {answer['answer']}")
|
91 |
|
92 |
-
|
93 |
-
st.error("CSV file should contain 'Description', 'Amount', and 'Date' columns.")
|
|
|
|
|
1 |
import pandas as pd
|
2 |
import matplotlib.pyplot as plt
|
|
|
3 |
import plotly.express as px
|
4 |
+
import streamlit as st
|
5 |
+
from transformers import pipeline
|
6 |
|
7 |
+
# Upload CSV file containing transaction data
|
8 |
+
uploaded_file = st.file_uploader("Upload Expense CSV", type="csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
if uploaded_file is not None:
|
11 |
+
# Load the file into a DataFrame
|
12 |
df = pd.read_csv(uploaded_file)
|
13 |
|
14 |
+
# Display the first few rows of the dataset
|
15 |
+
st.write("First few rows of the dataset:", df.head())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Initialize Hugging Face's zero-shot text classification model
|
18 |
+
model_name = 'distilbert-base-uncased'
|
19 |
+
classifier = pipeline('zero-shot-classification', model=model_name)
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# List of possible expense categories
|
22 |
+
categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation", "Salary"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
# Function to classify transaction descriptions into categories
|
25 |
+
def categorize_expense(description):
|
26 |
+
result = classifier(description, candidate_labels=categories)
|
27 |
+
return result['labels'][0] # Choose the most probable category
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# Apply the categorization function to the 'Description' column in the dataset
|
30 |
+
df['Category'] = df['Description'].apply(categorize_expense)
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Show the ca
|
|