engralimalik's picture
Update app.py
e833f6e verified
import pandas as pd
import plotly.express as px
import streamlit as st
from transformers import pipeline
import datetime
import matplotlib.pyplot as plt
# Function to add background image to the app
def add_bg_from_url(image_url):
st.markdown(
f"""
<style>
.stApp {{
background-image: url({image_url});
background-size: cover;
background-position: center center;
background-repeat: no-repeat;
}}
</style>
""",
unsafe_allow_html=True
)
# Set background image (it will remain even after file upload)
add_bg_from_url('https://huggingface.co./spaces/engralimalik/Smart-Expense-Tracker/resolve/main/top-view-finance-business-elements.jpg')
# File upload
uploaded_file = st.file_uploader("Upload your expense CSV file", type=["csv"])
if uploaded_file:
df = pd.read_csv(uploaded_file)
# Display first few rows to the user for format verification
st.write("Here are the first few entries in your file for format verification:")
st.write(df.head())
# Ensure 'Amount' is numeric and 'Date' is in datetime format
df['Amount'] = pd.to_numeric(df['Amount'], errors='coerce')
df['Date'] = pd.to_datetime(df['Date'])
# Initialize Hugging Face model for zero-shot classification
classifier = pipeline('zero-shot-classification', model='roberta-large-mnli')
categories = ["Groceries", "Rent", "Utilities", "Entertainment", "Dining", "Transportation"]
# Function to categorize
def categorize_expense(description):
result = classifier(description, candidate_labels=categories)
return result['labels'][0] # Most probable category
# Apply categorization
df['Category'] = df['Description'].apply(categorize_expense)
# Sidebar for setting the monthly budget using sliders
st.sidebar.header("Set Your Monthly Budget")
groceries_budget = st.sidebar.slider("Groceries Budget", 0, 1000, 300)
rent_budget = st.sidebar.slider("Rent Budget", 0, 5000, 1000)
utilities_budget = st.sidebar.slider("Utilities Budget", 0, 500, 150)
entertainment_budget = st.sidebar.slider("Entertainment Budget", 0, 1000, 100)
dining_budget = st.sidebar.slider("Dining Budget", 0, 1000, 150)
transportation_budget = st.sidebar.slider("Transportation Budget", 0, 500, 120)
# Store the updated budget values
budgets = {
"Groceries": groceries_budget,
"Rent": rent_budget,
"Utilities": utilities_budget,
"Entertainment": entertainment_budget,
"Dining": dining_budget,
"Transportation": transportation_budget
}
# Get the minimum and maximum dates from the uploaded file
min_date = df['Date'].min()
max_date = df['Date'].max()
# Add a date slider for start and end date based on data from the uploaded file
start_date = st.sidebar.date_input("Start Date", min_date)
end_date = st.sidebar.date_input("End Date", max_date)
# Filter data by date range
df_filtered = df[(df['Date'] >= pd.to_datetime(start_date)) & (df['Date'] <= pd.to_datetime(end_date))]
# Track if any category exceeds its budget
df_filtered['Budget_Exceeded'] = df_filtered.apply(lambda row: row['Amount'] > budgets.get(row['Category'], 0), axis=1)
# Show categories that exceeded their budget
exceeded_budget = df_filtered[df_filtered['Budget_Exceeded'] == True]
st.write("Categories that exceeded the budget:", exceeded_budget[['Date', 'Category', 'Amount']])
# Visualizations
# 1. Pie Chart for expense distribution by category
category_expenses = df_filtered.groupby('Category')['Amount'].sum()
fig1 = px.pie(category_expenses, values=category_expenses.values, names=category_expenses.index, title="Expense Distribution by Category")
st.plotly_chart(fig1)
# 2. Monthly Spending Trends (Line Chart)
df_filtered['Month'] = df_filtered['Date'].dt.to_period('M').astype(str) # Convert Period to string for Plotly compatibility
monthly_expenses = df_filtered.groupby('Month')['Amount'].sum()
# Convert monthly_expenses into DataFrame for correct plotting
monthly_expenses_df = monthly_expenses.reset_index()
if not monthly_expenses_df.empty:
fig2 = px.line(monthly_expenses_df, x='Month', y='Amount', title="Monthly Expenses", labels={"Month": "Month", "Amount": "Amount ($)"})
st.plotly_chart(fig2)
else:
st.write("No data to display for the selected date range.")
# 3. Monthly Spending vs Budget (Bar Chart)
if not monthly_expenses_df.empty:
monthly_expenses_df = pd.DataFrame({
'Actual': monthly_expenses,
'Budget': [sum(budgets.values())] * len(monthly_expenses) # Same budget for simplicity
})
# Create a Matplotlib figure for the bar chart
fig3, ax = plt.subplots(figsize=(10, 6))
monthly_expenses_df.plot(kind='bar', ax=ax)
ax.set_title('Monthly Spending vs Budget')
ax.set_ylabel('Amount ($)')
ax.set_xlabel('Month')
# Use st.pyplot to display the figure
st.pyplot(fig3)
else:
st.write("No data to display for the selected date range.")