import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_repo_id = "stabilityai/sdxl-turbo" # 사용하려는 모델 이름 if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer( prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt=prompt, negative_prompt=negative_prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, width=width, height=height, generator=generator, ).images[0] return image, seed examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # 텍스트-이미지 생성 Gradio 템플릿") with gr.Row(): prompt = gr.Text( label="프롬프트", show_label=False, max_lines=1, placeholder="생성하고 싶은 이미지를 입력하세요", container=False, ) run_button = gr.Button("실행", scale=0, variant="primary") result = gr.Image(label="결과", show_label=False) with gr.Accordion("고급 설정", open=False): negative_prompt = gr.Text( label="네거티브 프롬프트", max_lines=1, placeholder="포함하지 않을 내용을 입력하세요", visible=False, ) seed = gr.Slider( label="시드 값", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="시드 랜덤화", value=True) with gr.Row(): width = gr.Slider( label="너비 (픽셀)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # 모델에 적합한 기본값으로 설정 ) height = gr.Slider( label="높이 (픽셀)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, # 모델에 적합한 기본값으로 설정 ) with gr.Row(): guidance_scale = gr.Slider( label="가이던스 스케일", minimum=0.0, maximum=10.0, step=0.1, value=0.0, # 모델에 적합한 기본값으로 설정 ) num_inference_steps = gr.Slider( label="추론 단계 수", minimum=1, maximum=50, step=1, value=2, # 모델에 적합한 기본값으로 설정 ) gr.Examples(examples=examples, inputs=[prompt]) gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, ], outputs=[result, seed], ) if __name__ == "__main__": demo.launch()