Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,12 @@
|
|
1 |
-
import
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from transformers import MarianTokenizer, MarianMTModel
|
5 |
from parler_tts import ParlerTTSForConditionalGeneration
|
6 |
-
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
|
7 |
from PyPDF2 import PdfReader
|
8 |
import re
|
9 |
import textwrap
|
10 |
import soundfile as sf
|
11 |
-
import numpy as np
|
12 |
|
13 |
# Device configuration
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
@@ -21,13 +19,12 @@ SAMPLE_RATE = feature_extractor.sampling_rate
|
|
21 |
SEED = 42
|
22 |
|
23 |
# Helper function to extract text from a PDF
|
24 |
-
def pdf_to_text(
|
25 |
-
with open(
|
26 |
pdf_reader = PdfReader(file)
|
27 |
text = ""
|
28 |
-
for
|
29 |
-
page
|
30 |
-
text += page.extract_text()
|
31 |
return text
|
32 |
|
33 |
# Helper function to split text into sentences using regex
|
@@ -37,10 +34,8 @@ def split_text_into_sentences(text):
|
|
37 |
return [sentence.strip() for sentence in sentences if sentence.strip()]
|
38 |
|
39 |
# Translation function
|
40 |
-
@spaces.GPU(duration=120)
|
41 |
def translate(source_text, source_lang, target_lang, batch_size=16):
|
42 |
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
43 |
-
|
44 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
45 |
model = MarianMTModel.from_pretrained(model_name).to(device)
|
46 |
|
@@ -58,19 +53,16 @@ def translate(source_text, source_lang, target_lang, batch_size=16):
|
|
58 |
|
59 |
return translated_text
|
60 |
|
61 |
-
# Function to
|
62 |
-
def
|
63 |
-
|
64 |
-
|
65 |
-
text += "."
|
66 |
-
return text
|
67 |
|
68 |
# Function to generate audio for a single sentence
|
69 |
-
@spaces.GPU(duration=120)
|
70 |
def generate_single_wav_from_text(sentence, description):
|
71 |
-
|
72 |
inputs = tts_tokenizer(description.strip(), return_tensors="pt").to(device)
|
73 |
-
prompt = tts_tokenizer(
|
74 |
|
75 |
generation = tts_model.generate(
|
76 |
input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask,
|
@@ -83,7 +75,9 @@ def generate_single_wav_from_text(sentence, description):
|
|
83 |
with gr.Blocks() as demo:
|
84 |
with gr.Row():
|
85 |
with gr.Column():
|
86 |
-
|
|
|
|
|
87 |
translate_checkbox = gr.Checkbox(label="Enable Translation", value=False)
|
88 |
source_lang = gr.Dropdown(choices=["en", "tr", "de", "fr"], label="Source Language", value="en", interactive=True)
|
89 |
target_lang = gr.Dropdown(choices=["tr"], label="Target Language", value="tr", interactive=True)
|
@@ -94,55 +88,34 @@ with gr.Blocks() as demo:
|
|
94 |
audio_output = gr.Audio(label="Generated Audio")
|
95 |
markdown_output = gr.Markdown()
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
def
|
104 |
-
|
105 |
-
print("Extracting text from PDF...")
|
106 |
-
text = pdf_to_text(pdf_input.name)
|
107 |
-
print(f"Extracted text: {text[:100]}...") # Display the first 100 characters for a quick preview
|
108 |
|
109 |
-
# Perform translation if enabled
|
110 |
if translate_checkbox:
|
111 |
-
print("Translating text...")
|
112 |
text = translate(text, source_lang, target_lang)
|
113 |
-
print(f"Translated text: {text[:100]}...") # Display the first 100 characters for a quick preview
|
114 |
|
115 |
sentences = split_text_into_sentences(text)
|
116 |
all_audio = []
|
117 |
all_text = ""
|
118 |
-
|
119 |
for sentence in sentences:
|
120 |
-
print(f"Processing sentence: {sentence[:50]}...") # Display the first 50 characters for a quick preview
|
121 |
sample_rate, audio_arr = generate_single_wav_from_text(sentence, description)
|
122 |
all_audio.append(audio_arr)
|
123 |
combined_audio = combine_audio_arrays(all_audio)
|
124 |
all_text += f"**Sentence**: {sentence}\n\n"
|
125 |
-
|
126 |
-
# Yield the accumulated results
|
127 |
-
yield sample_rate, combined_audio, all_text
|
128 |
-
|
129 |
-
print("Processing complete.")
|
130 |
-
|
131 |
-
# Update the Gradio interface pipeline function to handle combined audio
|
132 |
-
def run_pipeline(pdf_input, translate_checkbox, source_lang, target_lang, description):
|
133 |
-
# Stream outputs to Gradio interface
|
134 |
-
for sample_rate, combined_audio, markdown_text in handle_process(pdf_input, translate_checkbox, source_lang, target_lang, description):
|
135 |
-
yield (sample_rate, combined_audio), markdown_text
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
source_lang.change(fn=lambda lang: gr.update(choices={"en": ["de", "fr", "tr"], "tr": ["en"], "de": ["en", "fr"], "fr": ["en", "de"]}.get(lang, [])), inputs=source_lang, outputs=target_lang)
|
145 |
-
run_button.click(run_pipeline, inputs=[pdf_input, translate_checkbox, source_lang, target_lang, description], outputs=[audio_output, markdown_output])
|
146 |
|
147 |
-
demo.
|
148 |
-
demo.launch(share=True)
|
|
|
1 |
+
import numpy as np
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
+
from transformers import MarianTokenizer, MarianMTModel, AutoTokenizer, AutoFeatureExtractor
|
5 |
from parler_tts import ParlerTTSForConditionalGeneration
|
|
|
6 |
from PyPDF2 import PdfReader
|
7 |
import re
|
8 |
import textwrap
|
9 |
import soundfile as sf
|
|
|
10 |
|
11 |
# Device configuration
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
19 |
SEED = 42
|
20 |
|
21 |
# Helper function to extract text from a PDF
|
22 |
+
def pdf_to_text(pdf_file):
|
23 |
+
with open(pdf_file, 'rb') as file:
|
24 |
pdf_reader = PdfReader(file)
|
25 |
text = ""
|
26 |
+
for page in pdf_reader.pages:
|
27 |
+
text += page.extract_text() or ""
|
|
|
28 |
return text
|
29 |
|
30 |
# Helper function to split text into sentences using regex
|
|
|
34 |
return [sentence.strip() for sentence in sentences if sentence.strip()]
|
35 |
|
36 |
# Translation function
|
|
|
37 |
def translate(source_text, source_lang, target_lang, batch_size=16):
|
38 |
model_name = f"Helsinki-NLP/opus-mt-{source_lang}-{target_lang}"
|
|
|
39 |
tokenizer = MarianTokenizer.from_pretrained(model_name)
|
40 |
model = MarianMTModel.from_pretrained(model_name).to(device)
|
41 |
|
|
|
53 |
|
54 |
return translated_text
|
55 |
|
56 |
+
# Function to combine audio arrays
|
57 |
+
def combine_audio_arrays(audio_list):
|
58 |
+
combined_audio = np.concatenate(audio_list, axis=0)
|
59 |
+
return combined_audio
|
|
|
|
|
60 |
|
61 |
# Function to generate audio for a single sentence
|
|
|
62 |
def generate_single_wav_from_text(sentence, description):
|
63 |
+
torch.manual_seed(SEED)
|
64 |
inputs = tts_tokenizer(description.strip(), return_tensors="pt").to(device)
|
65 |
+
prompt = tts_tokenizer(sentence, return_tensors="pt").to(device)
|
66 |
|
67 |
generation = tts_model.generate(
|
68 |
input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask,
|
|
|
75 |
with gr.Blocks() as demo:
|
76 |
with gr.Row():
|
77 |
with gr.Column():
|
78 |
+
input_mode = gr.Radio(choices=["Upload PDF", "Type Text"], label="Input Mode", value="Type Text")
|
79 |
+
pdf_input = gr.File(label="Upload PDF", file_types=['pdf'], visible=False)
|
80 |
+
text_input = gr.Textbox(label="Type your text here", visible=True, placeholder="Enter text here if not uploading a PDF...")
|
81 |
translate_checkbox = gr.Checkbox(label="Enable Translation", value=False)
|
82 |
source_lang = gr.Dropdown(choices=["en", "tr", "de", "fr"], label="Source Language", value="en", interactive=True)
|
83 |
target_lang = gr.Dropdown(choices=["tr"], label="Target Language", value="tr", interactive=True)
|
|
|
88 |
audio_output = gr.Audio(label="Generated Audio")
|
89 |
markdown_output = gr.Markdown()
|
90 |
|
91 |
+
def handle_input(input_mode, pdf_input, text_input):
|
92 |
+
if input_mode == "Upload PDF":
|
93 |
+
return pdf_to_text(pdf_input.name)
|
94 |
+
else:
|
95 |
+
return text_input
|
96 |
+
|
97 |
+
def run_pipeline(input_mode, pdf_input, text_input, translate_checkbox, source_lang, target_lang, description):
|
98 |
+
text = handle_input(input_mode, pdf_input, text_input)
|
|
|
|
|
|
|
99 |
|
|
|
100 |
if translate_checkbox:
|
|
|
101 |
text = translate(text, source_lang, target_lang)
|
|
|
102 |
|
103 |
sentences = split_text_into_sentences(text)
|
104 |
all_audio = []
|
105 |
all_text = ""
|
|
|
106 |
for sentence in sentences:
|
|
|
107 |
sample_rate, audio_arr = generate_single_wav_from_text(sentence, description)
|
108 |
all_audio.append(audio_arr)
|
109 |
combined_audio = combine_audio_arrays(all_audio)
|
110 |
all_text += f"**Sentence**: {sentence}\n\n"
|
111 |
+
yield (sample_rate, combined_audio), all_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
+
input_mode.change(
|
114 |
+
fn=lambda choice: [gr.update(visible=choice == "Upload PDF"), gr.update(visible=choice == "Type Text")],
|
115 |
+
inputs=input_mode,
|
116 |
+
outputs=[pdf_input, text_input]
|
117 |
+
)
|
118 |
|
119 |
+
run_button.click(run_pipeline, inputs=[input_mode, pdf_input, text_input, translate_checkbox, source_lang, target_lang, description], outputs=[audio_output, markdown_output])
|
|
|
|
|
120 |
|
121 |
+
demo.launch(share=True)
|
|