import gradio as gr import torch import soundfile as sf import spaces import os import numpy as np import re from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan from speechbrain.pretrained import EncoderClassifier from datasets import load_dataset device = "cuda" if torch.cuda.is_available() else "cpu" def load_models_and_data(): model_name = "microsoft/speecht5_tts" processor = SpeechT5Processor.from_pretrained(model_name) model = SpeechT5ForTextToSpeech.from_pretrained("emirhanbilgic/speecht5_finetuned_emirhan_tr").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) spk_model_name = "speechbrain/spkrec-xvect-voxceleb" speaker_model = EncoderClassifier.from_hparams( source=spk_model_name, run_opts={"device": device}, savedir=os.path.join("/tmp", spk_model_name), ) # Load a sample from a dataset for default embedding dataset = load_dataset("erenfazlioglu/turkishvoicedataset", split="train") example = dataset[304] return model, processor, vocoder, speaker_model, example model, processor, vocoder, speaker_model, default_example = load_models_and_data() def create_speaker_embedding(waveform): with torch.no_grad(): speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform).unsqueeze(0).to(device)) speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2) speaker_embeddings = speaker_embeddings.squeeze() return speaker_embeddings def prepare_default_embedding(example): audio = example["audio"] return create_speaker_embedding(audio["array"]) default_embedding = prepare_default_embedding(default_example) replacements = [ ("â", "a"), # Long a ("ç", "ch"), # Ch as in "chair" ("ğ", "gh"), # Silent g or slight elongation of the preceding vowel ("ı", "i"), # Dotless i ("î", "i"), # Long i ("ö", "oe"), # Similar to German ö ("ş", "sh"), # Sh as in "shoe" ("ü", "ue"), # Similar to German ü ("û", "u"), # Long u ] number_words = { 0: "sıfır", 1: "bir", 2: "iki", 3: "üç", 4: "dört", 5: "beş", 6: "altı", 7: "yedi", 8: "sekiz", 9: "dokuz", 10: "on", 11: "on bir", 12: "on iki", 13: "on üç", 14: "on dört", 15: "on beş", 16: "on altı", 17: "on yedi", 18: "on sekiz", 19: "on dokuz", 20: "yirmi", 30: "otuz", 40: "kırk", 50: "elli", 60: "altmış", 70: "yetmiş", 80: "seksen", 90: "doksan", 100: "yüz", 1000: "bin" } def number_to_words(number): if number < 20: return number_words[number] elif number < 100: tens, unit = divmod(number, 10) return number_words[tens * 10] + (" " + number_words[unit] if unit else "") elif number < 1000: hundreds, remainder = divmod(number, 100) return (number_words[hundreds] + " yüz" if hundreds > 1 else "yüz") + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000: thousands, remainder = divmod(number, 1000) return (number_to_words(thousands) + " bin" if thousands > 1 else "bin") + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000000: millions, remainder = divmod(number, 1000000) return number_to_words(millions) + " milyon" + (" " + number_to_words(remainder) if remainder else "") elif number < 1000000000000: billions, remainder = divmod(number, 1000000000) return number_to_words(billions) + " milyar" + (" " + number_to_words(remainder) if remainder else "") else: return str(number) def replace_numbers_with_words(text): def replace(match): number = int(match.group()) return number_to_words(number) # Find the numbers and change with words. result = re.sub(r'\b\d+\b', replace, text) return result def normalize_text(text): # Convert to lowercase text = text.lower() # Replace numbers with words text = replace_numbers_with_words(text) # Apply character replacements for old, new in replacements: text = text.replace(old, new) # Remove punctuation text = re.sub(r'[^\w\s]', '', text) return text @spaces.GPU(duration=60) def text_to_speech(text, audio_file=None): # Normalize the input text normalized_text = normalize_text(text) # Prepare the input for the model inputs = processor(text=normalized_text, return_tensors="pt").to(device) # Use the default speaker embedding speaker_embeddings = default_embedding # Generate speech with torch.no_grad(): speech = model.generate_speech(inputs["input_ids"], speaker_embeddings.unsqueeze(0), vocoder=vocoder) speech_np = speech.cpu().numpy() return (16000, speech_np) iface = gr.Interface( fn=text_to_speech, inputs=[ gr.Textbox(label="Enter Turkish text to convert to speech") ], outputs=[ gr.Audio(label="Generated Speech", type="numpy") ], title="Turkish SpeechT5 Text-to-Speech Demo", description="Enter Turkish text, and listen to the generated speech." ) iface.launch(share=True)